1 Problems

Exercise 1. You measure the distance to a tower to be 4 m . You turn through an angle of 30° and measure the distance to a different tower to be 8 m . How far are the towers?

Exercise 2. You have a triangle with angle $A=45^{\circ}$ and angle $C=60^{\circ}$. The opposing side a to A has length 10. Find the length of the opposing side c to angle C.

Exercise 3. You have a triangle with angle $A=45^{\circ}$ and angle $C=30^{\circ}$. The opposing side c to C has length 6. Find the length of the opposing side a to angle A.

Exercise 4. You have a triangle with angle $A=60^{\circ}$ and angle $B=45^{\circ}$. The side opposite to B has length 16. Find the length of the side opposite to A.

Exercise 5. Compute $\sin \left(\cos ^{-1}\left(\frac{5}{13}\right)\right)$.

2 Answer key

Exercise 1. $x=\sqrt{16+64\left(1-\frac{\sqrt{3}}{2}\right)}$
Exercise 2. $c=\frac{10 \sqrt{3}}{\sqrt{2}}$
Exercise 3. $a=6 \sqrt{2}$.
Exercise 4. $x=\frac{16 \sqrt{3}}{\sqrt{2}}$
Exercise 5. $\frac{12}{13}$

3 Solutions

Exercise 1. Use the law of cosines: $x^{2}=4^{2}+8^{2}-2^{*} 4^{*} 8 \cos \left(30^{\circ}\right)=16+64-64\left(\frac{\sqrt{3}}{2}\right)=16+64\left(1-\frac{\sqrt{3}}{2}\right)$. So $x=\sqrt{16+64\left(1-\frac{\sqrt{3}}{2}\right)}$.

Exercise 2. Use the law of sines: $\frac{\sin 45^{\circ}}{10}=\frac{\sin 60^{\circ}}{c}$. Cross multiplying gives us $c=\frac{10 \sqrt{3}}{\sqrt{2}}$.
Exercise 3. Use the law of sines: $\frac{\sin 45^{\circ}}{a}=\frac{\sin 30^{\circ}}{6}$. Cross multiplying gives us $6 \sqrt{2}$.
Exercise 4. Law of sines: $\frac{\sin 45^{\circ}}{16}=\frac{\sin 60^{\circ}}{x}$. Solving for x gives us $\frac{16 \sqrt{3}}{\sqrt{2}}$.
Exercise 5. By Pythagoras the remaining side of the triangle is 12 . So we obtain $\sin (x)=\frac{12}{13}$.

