## 1 Problems

Exercise 1. The half life of an element is 4 hours. If there are 200 grams originally, how much will there be after 20 hours?

Exercise 2. If you have 100 grams of an element originally and after 4 hours you have 50 grams, how many will you have after 8 hours?

Exercise 3. Solve $\log _{2}(2 x+1)-\log _{2}(x+1)=4$ for $x$ if there is a solution. Otherwise say no solution.

Exercise 4. Solve $8^{x+1}=4^{x+2}$ for $x$.
Exercise 5. Solve $8^{x+1}=11$ for $x$ in terms of log.

## 2 Answer key

Exercise 1. $\frac{25}{4}$ grams
Exercise 2. 25 grams
Exercise 3. No solution.
Exercise 4. $x=0$.
Exercise 5. $x=\log _{8} 11-1$.

## 3 Solutions

Exercise 1. We use the formula $A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{K}}$ where $K$ is the half life. Then $A_{0}=200$ and $K=4$ and $t=20$. So $A(20)=200\left(\frac{1}{2}\right)^{\frac{20}{4}}=200^{*} \frac{1}{2^{5}}=\frac{200}{32}=\frac{25}{4}$.

Exercise 2. The general exponential formula is $y=a b^{x}$ where $a$ is the initial amount and $b$ is the growth or decay rate. So we have $50=100 b^{4}$ so $b=\frac{1}{2}^{\frac{1}{4}}$. Then plugging in $x=8$ for 8 hours later into the formula, we get $y=100\left(\frac{1}{2}\right)^{\frac{8}{4}}=100\left(\frac{1}{2}\right)^{2}=\frac{100}{4}=25$.

Exercise 3. The whole expression is equal to $\log _{2}\left(\frac{2 x+1}{x+1}\right)=4$ so $2^{4}=\frac{2 x+1}{x+1}$. This is equal to $16(x+1)=2 x+1$ so $x=-\frac{15}{14}$. But plugging in $x$ into the expressions give negative numbers, and $\log$ of a negative number is not well defined.

Exercise 4. The left hand side is $4^{2 x+2}$ so we need to solve $2 x+2=x+2$. This gives $x=0$.
Exercise 5. $8^{x+1}=11$ so take $\log$ on both sides to get $\log _{8}\left(8^{x+1}\right)=\log _{8} 11$. Then the left hand side is equal to $x+1$ so we get $x+1=\log _{8} 11$. So $x=\log _{8} 11-1$.

