1 Problems

Exercise 1. What is the domain of the function $f(x)=\sqrt{x-4}$?
Exercise 2. What is the domain of the function $f(x)=\frac{1}{x-3}$?
Exercise 3. What is the domain of the function $f(x)=x^{2}$?
Exercise 4. Let $f(x)=x+1$ and $g(x)=\frac{1}{x^{2}}$. What is $f \circ g$? What is the domain of $f \circ g$?
Exercise 5. Let $f(x)=x+1$ and $g(x)=\frac{1}{x^{2}}$. What is $g \circ f$? What is the domain of $g \circ f$?

2 Answer key

Exercise 1. $[4, \infty)$.
Exercise 2. $(-\infty, 3) \cup(3, \infty)$.
Exercise 3. $(-\infty, \infty)$.
Exercise 4. $f \circ g=\frac{1}{x^{2}}+1$. The domain is $(-\infty, 0) \cup(0, \infty)$.
Exercise 5. $g \circ f=\frac{1}{(x+1)^{2}}$. The domain is $(-\infty, \infty)$.

3 Solutions

Exercise 1. The square root funtion is only defined on $[0, \infty)$. Since there is an $x-4$ in the square root, x must be 4 or greater.

Exercise 2. The function has denominator $x-3$ which is zero when $x=3$. So it is defined everywhere but at 3 .

Exercise 3. This function is defined everywhere.
Exercise 4. $f \circ g$ means you input $g(x)$ where x is in $f(x)$. The function g is only defined on $(-\infty, 0) \cup(0, \infty)$ so the composition is also only defined on this domain.

Exercise 5. $g \circ f$ means you input $f(x)$ where x is in $g(x)$. The function f is defined everywhere, so the composition is also defined everywhere.

