1 Problems

Exercise 1. Compute $\sin \left(\frac{25 \pi}{6}\right)$.
Exercise 2. Compute $\cos \left(\frac{21 \pi}{4}\right)$.
Exercise 3. Compute $\cos \left(\frac{25 \pi}{4}\right)$..
Exercise 4. Let $0<x<\frac{\pi}{2}$ and $\sin (x)=\frac{5}{13}$. Find $\tan (x)$.
Exercise 5. Let $0<x<\frac{\pi}{2}$ and $\sin (x)=\frac{5}{13}$. Find $\cot (x)$.

2 Answer key

Exercise 1. $\frac{1}{2}$.
Exercise 2. - $\frac{\sqrt{2}}{2}$.
Exercise 3. $\frac{\sqrt{2}}{2}$.
Exercise 4. $\frac{5}{12}$.
Exercise 5. $\frac{12}{5}$.

3 Solutions

Exercise 1. $\frac{25 \pi}{6}=\frac{24 \pi}{6}+\frac{\pi}{6}$ so $\sin \left(\frac{25 \pi}{6}\right)=\sin \left(4 \pi+\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$.
Exercise 2. $\frac{21 \pi}{4}=\frac{20 \pi}{4}+\frac{\pi}{4}$ so $\cos \left(\frac{21 \pi}{4}\right)=\cos \left(5 \pi+\frac{\pi}{4}\right)=-\cos \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}$.
Exercise 3. $\frac{25 \pi}{4}=\frac{24 \pi}{4}+\frac{\pi}{4}$ so $\cos \left(\frac{25 \pi}{4}\right)=\cos \left(6 \pi+\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$.
Exercise 4. By Pythagoras, the missing side of the right triangle in the first quadrant has length 12 , with sign positive since we are in the first quadrant. So $\tan (x)=\frac{o p p o s i t e}{\text { adjacent }}=\frac{5}{12}$.

Exercise 5. $\cot (x)$ is $1 / \tan (x)$ and exercise 4 computes $\tan (x)$ as $\frac{5}{12}$, so $\cot (x)=\frac{12}{5}$.

