1 Problems

Exercise 1. A person stands 20 feet from the base of a wall and measures the angle of elevation tot he top as 60°. How tall is the wall?
Exercise 2. A pole is supported by a rope that runs from the top of the pole to the ground. The rope is 60 feet long and makes an angle with the ground of 30°. How tall is the pole?
Exercise 3. Convert $\frac{\pi}{6}$ to degrees.
Exercise 4. If $\cos (x)=\frac{1}{2}$ and $0<x<\frac{\pi}{2}$, find $\sin (x)$.
Exercise 5. If $\cos (x)=\frac{1}{2}$ and $0<x<\frac{\pi}{2}$, find $\tan (x)$.

2 Answer key

Exercise 1. $20 \sqrt{3}$ feet.
Exercise 2. 30 feet.

Exercise 3. 30°.
Exercise 4. $\frac{\sqrt{3}}{2}$.
Exercise 5. $\sqrt{3}$.

3 Solutions

Exercise 1. The angle from the floor to the person's line of sight is 60° and $\tan 60^{\circ}=\sqrt{3}$. Moreover, $\tan (x)=\frac{\text { opposite }}{\text { adjacent }}$ so we have $20^{*} \tan \left(60^{\circ}\right)=$ opposite.

Exercise 2. The angle formed by the rope and the ground is 30°. The length of the rope is 60 feet, which is the hypotenuse. Using that $\sin (x)=\frac{\text { opposite }}{\text { hypotenuse }}$, where opposite is the length of the pole, we have that the pole is $60^{*} \sin 30^{\circ}=60^{*} \frac{1}{2}=30$.

Exercise 3. $\frac{\pi}{6} * \frac{180^{\circ}}{\pi}=\frac{180}{6}=30$.
Exercise 4. Draw a right triangle in the first quadrant with hypotenuse 2 and horizontal length 1. Let x denote the angle formed by the hypotenuse and the horizontal axis. By Pythagoras, the vertical length is $\sqrt{3}$, and so $\sin (x)=\frac{\sqrt{3}}{2}$ since $\sin (x)=\frac{\text { opposite }}{\text { hypotenuse }}$.

Exercise 5. Draw a right triangle in the first quadrant with hypotenuse 2 and horizontal length 1. Let x denote the angle formed by the hypotenuse and the horizontal axis. By Pythagoras, the vertical length is $\sqrt{3}$ and so $\tan (x)=\sqrt{3}$ since $\tan (x)=\frac{\text { opposite }}{\text { adjacent }}$.

