1 Problems

Exercise 1. A person stands 20 feet from the base of a wall and measures the angle of elevation to the top as 60° . How tall is the wall?

Exercise 2. A pole is supported by a rope that runs from the top of the pole to the ground. The rope is 60 feet long and makes an angle with the ground of 30° . How tall is the pole?

Exercise 3. Convert $\frac{\pi}{6}$ to degrees. **Exercise 4.** If $\cos(x) = \frac{1}{2}$ and $0 < x < \frac{\pi}{2}$, find $\sin(x)$. **Exercise 5.** If $\cos(x) = \frac{1}{2}$ and $0 < x < \frac{\pi}{2}$, find $\tan(x)$.

2 Answer key

Exercise 1. $20\sqrt{3}$ feet.

Exercise 2. 30 feet.

Exercise 3. 30° .

Exercise 4. $\frac{\sqrt{3}}{2}$.

Exercise 5. $\sqrt{3}$.

3 Solutions

Exercise 1. The angle from the floor to the person's line of sight is 60° and $\tan 60^{\circ} = \sqrt{3}$. Moreover, $\tan(x) = \frac{opposite}{adjacent}$ so we have $20^{*}\tan(60^{\circ}) = opposite$.

Exercise 2. The angle formed by the rope and the ground is 30° . The length of the rope is 60 feet, which is the hypotenuse. Using that $\sin(x) = \frac{opposite}{hypotenuse}$, where *opposite* is the length of the pole, we have that the pole is $60^{*}\sin 30^{\circ} = 60^{*}\frac{1}{2} = 30$.

Exercise 3. $\frac{\pi}{6} * \frac{180^{\circ}}{\pi} = \frac{180}{6} = 30.$

Exercise 4. Draw a right triangle in the first quadrant with hypotenuse 2 and horizontal length 1. Let x denote the angle formed by the hypotenuse and the horizontal axis. By Pythagoras, the vertical length is $\sqrt{3}$, and so $\sin(x) = \frac{\sqrt{3}}{2}$ since $\sin(x) = \frac{opposite}{hypotenuse}$.

Exercise 5. Draw a right triangle in the first quadrant with hypotenuse 2 and horizontal length 1. Let x denote the angle formed by the hypotenuse and the horizontal axis. By Pythagoras, the vertical length is $\sqrt{3}$ and so $\tan(x) = \sqrt{3}$ since $\tan(x) = \frac{opposite}{adjacent}$.