Exercise 1. Compute the definite integral $\int_{1}^{9} \frac{e \sqrt{x}}{\sqrt{x}} d x$.
Solution. Let $u=\sqrt{x}$ so $d u=\frac{1}{2 \sqrt{x}} d x$. Then the integral becomes $\int_{\sqrt{1}}^{\sqrt{9}} 2 e^{u} d u$, which is $2 \int_{1}^{3} e^{u} d u=$ $\left.2 e^{u}\right|_{1} ^{3}$. This is $2\left(e^{3}-e\right)$.
Exercise 2. Compute the definite integral $\int_{1}^{2} x \sqrt{x-1} d x$.
Solution. Let $u=x-1$. Then $d u=d x$ and the integral becomes $\int_{0}^{1}(u+1) \sqrt{u} d u$. Multiplying in \sqrt{u} into the parentheses gives us $\int_{0}^{1} u^{\frac{3}{2}}+u^{\frac{1}{2}}$. By power rule we get this integral is $\frac{2}{5} u^{\frac{5}{2}}+\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{0} ^{1}$. This evaluates to $\frac{2}{5}+\frac{2}{3}$ which is $\frac{16}{15}$.
Exercise 3. Compute the definite integral $\int_{0}^{2} \frac{e^{x}+1}{e^{x}+x} d x$.
Solution. Let $u=e^{x}+x$. Then $d u=\left(e^{x}+1\right) d x$. So the integral becomes $\int_{1}^{e^{2}+2} \frac{1}{u} d u$ which is $\left.\ln (u)\right|_{1} ^{e^{2}+2}$. This computes to $\ln \left(e^{2}+2\right)-\ln (1)=\ln \left(e^{2}+2\right)$.
Exercise 4. Evaluate the indefinite integral $\int x \sin \left(x^{2}\right) d x$.
Solution. Let $u=x^{2}$ so $d u=2 x d x$. Then the integral is $\int \frac{1}{2} \sin (u) d u$. So this is $-\frac{1}{2} \cos (u)+C$. Substituting back in x gives us $-\frac{1}{2} \cos \left(x^{2}\right)+C$.
Exercise 5. Evaluate the indefinite integral $\int \cos ^{3} x \sin x d x$.
Solution. Let $u=\cos x$. Then $d u=\sin x d x$ and the integral becomes $\int u^{3} d u$ which is $\frac{u^{4}}{4}+C$. Substituting back in x gives us $\frac{\cos ^{4} x}{4}+C$.

