## 1

Compute the following definite integrals:

1. $\int_{\pi}^{2 \pi}(\sin (x)+1) d x$
2. $\int_{0}^{5}\left(x^{4}+4 x+3\right) d x$

## 2

Find the area under the curve $g(x)=\cos (x+1)+x$ between $x=\pi-1$ and $x=2 \pi-1$.

## 3

Define a function:

$$
f_{a}(x)=\int_{a}^{x^{2}} t^{2} d t
$$

for some constant value $a$. Compute $f_{a}^{\prime}(x)$. Does this depend on the value of $a$ ?

## 4

Let $R(t)$ denote the approximate number of cars traveling on a given highway as a function of time $t$ in hours, and suppose $R(t)$ is given by the equation:

$$
R(t)=1000(t+\sqrt{t})
$$

Determine the approximate average, to the nearest whole number, of cars on the highway over the first 3 hours.

## 5

Determine an interval over which the function $h(s)=e^{-s}$ has an average value of $\frac{1}{4 \ln (2)}$.

## Answer Key

1. (i) $\pi-2 \quad$ (ii) 690 .
2. $\frac{1}{2}\left(3 \pi^{2}-2 \pi\right)$.
3. The derivative is $f_{a}^{\prime}(x)=2 x^{5}$, which is independent of $a$.
4. 7964. 
1. $(\ln (2), \ln (4))$.

## Solutions

1. Using the Fundamental Theorem of Calculus, we compute:

$$
\int_{\pi}^{2 \pi}(\sin (x)+1) d x=\left.(-\cos (x)+x)\right|_{\pi} ^{2 \pi}=-1+2 \pi-(1+\pi)=\pi-2
$$

Likewise, using the Fundamental Theorem of Calculus, we compute:

$$
\int_{0}^{5}\left(x^{4}+4 x+3\right) d x=\left.\left(\frac{1}{5} x^{5}+2 x^{2}+3 x\right)\right|_{0} ^{5}=5^{4}+2 \cdot 5^{2}+15=690
$$

2. The area is given by the following definite integral, which we compute using the Fundamental Theorem of Calculus:

$$
\int_{\pi-1}^{2 \pi-1}(\cos (x+1)+x) d x=\left.\left(\sin (x+1)+\frac{1}{2} x^{2}\right)\right|_{\pi-1} ^{2 \pi-1}=\left(0+\frac{1}{2}(2 \pi-1)^{2}\right)-\left(0+\frac{1}{2}(\pi-1)^{2}\right)
$$

which simplifies to given an area of $\frac{1}{2}\left(3 \pi^{2}-2 \pi\right)$.
3. We can compute $f_{a}(x)$ using the Fundamental Theorem of Calculus:

$$
f_{a}(x)=\left.\frac{1}{3} t^{3}\right|_{a} ^{x^{2}}=\frac{1}{3}\left(x^{6}-a^{3}\right)
$$

Taking the derivative, the constant term in $a^{3}$ goes away and we find:

$$
f_{a}^{\prime}(x)=2 x^{5}
$$

which does not depend on $a$.
4. The average value over the first three hours is given by:

$$
\int_{0}^{3} R(t) d t=1000 \int_{0}^{3}(t+\sqrt{t}) d t=\left.\left(500 t^{2}+\frac{2000}{3} t^{3 / 2}\right)\right|_{0} ^{3}=500 \cdot 3^{2}+\frac{2000}{3} \cdot 3^{3 / 2}=4500+2000 \sqrt{3}
$$

The nearest whole number to $4500+2000 \sqrt{3}$ is 7964 , so the approximate average number of cars on the highway over the first three hours was 7964.
5. The average value of the function $h(s)$ over an interval $(a, b)$ is given by the integral:

$$
H(s)=\frac{1}{b-a} \int_{a}^{b} e^{-s} d s=\left.\frac{-e^{-s}}{b-a}\right|_{a} ^{b}=\frac{e^{-a}-e^{-b}}{b-a}
$$

If we let $a=\ln (2)$ and $b=\ln (4)$, we obtain:

$$
H(s)=\frac{e^{-\ln (2)}-e^{-\ln (4)}}{\ln (4)-\ln (2)}=\frac{1 / 2-1 / 4}{\ln (4 / 2)}=\frac{1}{4 \ln (2)}
$$

as desired. Hence, the interval $(\ln (2), \ln (4))$ suffices for the problem.

