Homework

1. With $n=4$, (the number of rectangles), compute both the left endpoint and right endpoint Riemann sums for $y=\sin (\pi x)$ on $[0,1]$.
2. With $n=4$, compute both the left endpoint and right endpoint Riemann sums for $y=3 x^{2}+1$ on $[-1,3]$.
3. Recall that in the context of integrals and Riemann sums area can be negative. Approximate the area under the curve $y=x^{3}-4 x^{2}+1$ with $n=5$ on $[0,5]$ using a left endpoint and right endpoint Riemann sum.
4. Compute the left endpoint Riemann sum for $y=x^{2}-2 x$ on $[0,4]$ for
(a) $n=2$
(b) $n=4$
(c) $n=8$
5. Compute the right endpoint Riemann sum for $y=\ln x$ on $[1,4]$ with $n=6$.

Solutions Throughout this solution set, let L_{n}, R_{n} denote the left hand and right hand Riemann sums, respectively, with n rectangles.

1. With $n=4$, (the number of rectangles), compute both the left endpoint and right endpoint Riemann sums for $y=\sin (\pi x)$ on $[0,1]$.
Solution: The length of each rectangle is the length of the interval divided by the total number of rectangles which in this case is $1 / 4$. Thus,

$$
\begin{aligned}
L_{4} & =0.25 y(0)+0.25 y(0.25)+0.25 y(0.5)+0.25 y(0.75) \\
& =0.25(y(0)+y(0.25)+y(0.5)+y(0.75))=0.25(\sin (0)+\sin (\pi / 4)+\sin (\pi / 2)+\sin (3 \pi / 4)) \\
& =0.25(0+\sqrt{2} / 2+1+\sqrt{2} / 2)=0.25(1+\sqrt{2}) \simeq 0.6036
\end{aligned}
$$

And,

$$
\begin{aligned}
R_{4} & =0.25 y(0.25)+0.25 y(0.5)+0.25 y(0.75)+0.25 y(1) \\
& =0.25(y(0.25)+y(0.5)+y(0.75)+y(1))=0.25(\sin (\pi / 4)+\sin (\pi / 2)+\sin (3 \pi / 4)+\sin (\pi)) \\
& =0.25(\sqrt{2} / 2+1+\sqrt{2} / 2+0)=0.25(1+\sqrt{2}) \simeq 0.6036
\end{aligned}
$$

2. With $n=4$, compute both the left endpoint and right endpoint Riemann sums for $y=3 x^{2}+1$ on $[-1,3]$.
Solution: The length of each rectangle is $(2-(-2)) / 4=4 / 4=1$. Therefore,

$$
\begin{aligned}
L_{4} & =1 y(-1)+1 y(0)+1 y(1)+1 y(2)=y(-1)+y(0)+y(1)+y(2) \\
& =\left(3(-1)^{2}+1\right)+\left(3(0)^{2}+1\right)+\left(3(1)^{2}+1\right)+\left(3(2)^{2}+1\right)=22
\end{aligned}
$$

And,

$$
\begin{aligned}
R_{4} & =1 y(-1)+1 y(0)+1 y(1)+1 y(2)=y(-1)+y(0)+y(1)+y(2) \\
& =\left(3(0)^{2}+1\right)+\left(3(1)^{2}+1\right)+\left(3(2)^{2}+1\right)+\left(3(3)^{2}+1\right)=46
\end{aligned}
$$

3. Recall that in the context of integrals and Riemann sums area can be negative. Approximate the area under the curve $y=x^{3}-4 x^{2}+1$ with $n=5$ on $[0,5]$ using a left endpoint and right endpoint Riemann sum.
Solution: The length of each rectangle is $(5-0) / 5=1$. As such the area of each rectangle is given by 1 times the height of the rectangle.

$$
\begin{aligned}
L_{5} & =1 y(0)+1 y(1)+1 y(2)+1 y(3)+1 y(4)=y(0)+y(1)+y(2)+y(3)+y(4) \\
& =\left((0)^{3}-4(0)^{2}+1\right)+\left((1)^{3}-4(1)^{2}+1\right)+\left((2)^{3}-4(2)^{2}+1\right)+\left((3)^{3}-4(3)^{2}+1\right)+\left((4)^{3}-4(4)^{2}+1\right)
\end{aligned}
$$

And,

$$
\begin{aligned}
R_{5} & =1 y(1)+1 y(2)+1 y(3)+1 y(4)+1 y(5)=y(1)+y(2)+y(3)+y(4)+y(5) \\
& =\left((1)^{3}-4(1)^{2}+1\right)+\left((2)^{3}-4(2)^{2}+1\right)+\left((3)^{3}-4(3)^{2}+1\right)+\left((4)^{3}-4(4)^{2}+1\right)+\left((5)^{3}-4(5)^{2}+1\right.
\end{aligned}
$$

4. Compute the left endpoint Riemann sum for $y=x^{2}-2 x$ on $[0,4]$ for
(a) $n=2$

For $n=2$ the length of each rectangle is $(4-0) / 2=2$. Therefore, the left endpoints for the rectangles are at $x=0,2$. Summing the area of the rectangles gives us

$$
\begin{aligned}
L_{2} & =2 y(0)+2 y(2)=2(y(0)+y(2)) \\
& =2\left(\left((0)^{2}-2(0)\right)+\left((2)^{2}-2(2)\right)=0\right.
\end{aligned}
$$

(b) $n=4$

For $n=4$ the length of each rectangle is $(4-0) / 4=1$. Therefore, the left endpoints for the rectangles are at $x=0,1,2,3$. Summing the area of the rectangles gives us

$$
\begin{aligned}
L_{4} & =1 y(0)+1 y(1)+1 y(2)+1 y(3)=1(y(0)+y(1)+y(2)+y(3)) \\
& =\left((0)^{2}-2(0)\right)+\left((1)^{2}-2(1)\right)+\left((2)^{2}-2(2)\right)+\left((3)^{2}-2(3)\right)=2
\end{aligned}
$$

(c) $n=8$

For $n=4$ the length of each rectangle is $(4-0) / 8=0.5$. Therefore, the left endpoints for the rectangles are at $x=0,0.5,1,1.5,2,2.5,3,3.5$. Summing the area of the rectangles gives us

$$
\begin{aligned}
L_{8}= & 0.5 y(0)+0.5 y(0.5)+0.5 y(1)+0.5 y(1.5)+0.5 y(2)+0.5 y(2.5)+0.5 y(3)+0.5 y(3.5) \\
= & 0.5(y(0)+y(0.5)+y(1)+y(1.5)+y(2)+y(2.5)+y(3)+y(3.5)) \\
= & 0.5\left(\left((0)^{2}-2(0)\right)+\left((0.5)^{2}-2(0.5)\right)+\left((1)^{2}-2(1)\right)+\left((1.5)^{2}-2(1.5)\right)\right. \\
& \left.\quad \quad+\left((2)^{2}-2(2)\right)+\left((2.5)^{2}-2(2.5)\right)+\left((3)^{2}-2(3)\right)+\left((3.5)^{2}-2(3.5)\right)\right) \\
= & 3.5
\end{aligned}
$$

5. Compute the right endpoint Riemann sum for $y=\ln x$ on $[1,4]$ with $n=6$.

Solution: The length of each rectangle is $(4-1) / 6=0.5$. As such the area of each rectangle is given by 0.5 times the height of the rectangle. Summing the area of the rectangles gives us

$$
\begin{aligned}
R_{6} & =0.5 y(1.5)+0.5 y(2)+0.5 y(2.5)+0.5 y(3)+0.5 y(3.5)+0.5 y(4) \\
& =0.5(y(1.5)+y(2)+y(2.5)+y(3)+y(3.5)+y(4)) \\
& =0.5(\ln (1.5)+\ln (2)+\ln (2.5)+\ln (3)+\ln (3.5)+\ln (4)) \simeq 2.876
\end{aligned}
$$

Answer Key

1. With $n=4$, (the number of rectangles), compute both the left endpoint and right endpoint Riemann sums for $y=\sin (\pi x)$ on $[0,1]$.
$L_{4} \simeq .6036, R_{4} \simeq .6036$
2. With $n=4$, compute both the left endpoint and right endpoint Riemann sums for $y=3 x^{2}+1$ on $[-1,3]$.
$L_{4}=22, R_{4}=46$
3. Recall that in the context of integrals and Riemann sums area can be negative. Approximate the area under the curve $y=x^{3}-4 x^{2}+1$ with $n=5$ on $[0,5]$ using a left endpoint and right endpoint Riemann sum.
$L_{5}=-15, R_{5}=10$
4. Compute the left endpoint Riemann sum for $y=x^{2}-2 x$ on $[0,4]$ for
(a) $n=2$
$L_{2}=0$
(b) $n=4$
$L_{4}=2$
(c) $n=8$
$L_{8}=3.5$
5. Compute the right endpoint Riemann sum for $y=\ln x$ on $[1,4]$ with $n=6$. $R_{6} \simeq 2.876$
