Homework

1. Compute the derivative of $f(x)=9^{x}-8^{x}$.
2. Compute the derivative of $f(x)=x^{\pi} \pi^{x}$.
3. Compute the derivative of $f(x)=4^{\sin (3 x)}$.
4. Compute the derivative of $f(x)=\ln \left(x^{2}-\frac{2}{x^{2}}\right)$.
5. Compute the tangent line to the graph of f at $x=\pi / 4$ for $f(x)=$ $\log _{10}(\sec x)$.
6. Compute the tangent line to the graph of f at $x=1$ for $f(x)=e^{2 x^{3}}+$ $\ln \left(x^{2}\right)$.

Solutions

1. Compute the derivative of $f(x)=9^{x}-8^{x}$.

Solution: We use the derivative rule that $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a$. Applying this rule gives us

$$
f^{\prime}(x)=9^{x} \ln 9-8^{x} \ln 8
$$

2. Compute the derivative of $f(x)=x^{\pi} \pi^{x}$.

Solution: We use the derivative rule that $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a$, the power rule, and the product rule. Applying these rules gives us

$$
f^{\prime}(x)=\frac{d}{d x}\left[x^{\pi}\right] \pi^{x}+x^{\pi} \frac{d}{d x}\left[\pi^{x}\right]=\pi x^{\pi-1} \pi^{x}+x^{\pi} \pi^{x} \ln \pi .
$$

3. Compute the derivative of $f(x)=4^{\sin (3 x)}$.

Solution: We use the derivative rule that $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a$ and the chain rule. Applying these rules gives us

$$
f^{\prime}(x)=4^{\sin (3 x)} \frac{d}{d x}[\sin (3 x)]=4^{\sin (3 x)} \cos (3 x) \frac{d}{d x}[3 x]=4^{\sin (3 x)} \cos (3 x) 3
$$

4. Compute the derivative of $f(x)=\ln \left(x^{2}-\frac{2}{x^{2}}\right)$.

Solution: We use the derivative rule that $\frac{d}{d x}[\ln x]=1 / x$ and the chain rule. Applying these rules gives us

$$
f^{\prime}(x)=\frac{1}{x^{2}-\frac{2}{x^{2}}} \frac{d}{d x}\left[x^{2}-\frac{2}{x^{2}}\right]=\frac{1}{x^{2}-\frac{2}{x^{2}}}\left(2 x-\frac{-4}{x^{3}}\right) .
$$

Recall $\frac{1}{x^{2}}=x^{-2}$ and so $\frac{d}{d x}\left[\frac{1}{x^{2}}\right]=\frac{d}{d x}\left[x^{-2}\right]=-2 x^{-3}=\frac{-2}{x^{3}}$.
5. Compute the tangent line to the graph of f at $x=\pi / 4$ for $f(x)=$ $\log _{10}(\sec x)$.
Solution: The slope of the tangent line at $x=\pi / 4$ is given by $f^{\prime}(\pi / 4)$ so we start by computing f^{\prime}.

$$
f^{\prime}(x)=\frac{1}{\sec x \ln 10} \frac{d}{d x}[\sec x]=\frac{1}{\sec x \ln 10} \sec x \tan x=\frac{\tan x}{\ln 10} .
$$

Hence, $f^{\prime}(\pi / 4)=\frac{\tan (\pi / 4)}{\ln 10}=1 / \ln 10$. In order to find our tangent line we also need the y value corresponding to $x=\pi / 4$.

$$
f(\pi / 4)=\log _{10}(\sec (\pi / 4))=\log _{10}(1 / \cos (\pi / 4))=\log _{10}(1 /(\sqrt{2} / 2))=\log _{10}(\sqrt{2}) .
$$

The formula for the tangent line at $\left(x_{1}, f\left(x_{1}\right)\right)$ is $y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$. Plugging in our values gives us $y-\log _{10}(\sqrt{2})=\frac{1}{\ln 10}(x-\pi / 4)$.
6. Compute the tangent line to the graph of f at $x=1$ for $f(x)=e^{2 x^{3}}+$ $\ln \left(x^{2}\right)$.
Solution: The slope of the tangent line at $x=1$ is given by $f^{\prime}(1)$ so we start by computing f^{\prime}.

$$
f^{\prime}(x)=e^{2 x^{3}} \frac{d}{d x}\left[2 x^{3}\right]+\frac{1}{x^{2}} \frac{d}{d x}\left[x^{2}\right]=e^{2 x^{3}} 6 x^{2}+\frac{1}{x^{2}} 2 x=e^{2 x^{3}} 6 x^{2}+\frac{2}{x}
$$

Hence, $f^{\prime}(1)=6 e^{2}+2$. In order to find our tangent line we also need the y value corresponding to $x=1 . f(1)=e^{2}+\ln 1=e^{2}$. The formula for the tangent line at $(1, f(1))$ is $y-f(1)=f^{\prime}(1)(x-1)$. Plugging in our values gives us $y-e^{2}=\left(6 e^{2}+2\right)(x-1)$.

Answer Key

1. Compute the derivative of $f(x)=9^{x}-8^{x}$.
$f^{\prime}(x)=9^{x} \ln 9-8^{x} \ln 8$
2. Compute the derivative of $f(x)=x^{\pi} \pi^{x}$.
$f^{\prime}(x)=\pi x^{\pi-1} \pi^{x}+x^{\pi} \pi^{x} \ln \pi$
3. Compute the derivative of $f(x)=4^{\sin (3 x)}$.
$f^{\prime}(x)=4^{\sin (3 x)} \cos (3 x) 3$
4. Compute the derivative of $f(x)=\ln \left(x^{2}-\frac{2}{x^{2}}\right)$.
$f^{\prime}(x)=\frac{2 x-\frac{-4}{x^{3}}}{x^{2}-\frac{2}{x^{2}}}$
5. Compute the tangent line to the graph of f at $x=\pi / 4$ for $f(x)=$ $\log _{10}(\sec x)$.
$y-\log _{10}(\sqrt{2})=\frac{1}{\ln 10}(x-\pi / 4)$
6. Compute the tangent line to the graph of f at $x=1$ for $f(x)=e^{2 x^{3}}+$ $\ln \left(x^{2}\right)$.
$y-e^{2}=\left(6 e^{2}+2\right)(x-1)$
