MAT122 Homework 18-20

Problems

1. Use the product rule to compute the derivatives of the following functions:
(a) $f(x)=\left(12 x^{2}-x\right)\left(x^{3}-7 x^{2}+9\right)$
(b) $f(x)=\left(1+\sqrt{x^{5}}\right)\left(\frac{1}{x}-5 \sqrt[3]{x}\right)$
2. Use the quotient rule to compute the derivatives of the following functions:
(a) $f(x)=\frac{6 x^{3}}{2-x}$
(b) $f(x)=\frac{3 x+x^{4}}{2 x^{2}+1}$
3. Use the chain rule to compute the derivatives of the following functions:
(a) $f(x)=\left(6 x^{2}+7 x\right)^{4}$
(b) $f(x)=\sqrt[4]{1-8 x^{2}}$
4. If $f(3)=10, f^{\prime}(3)=7, g(3)=3, g^{\prime}(3)=-4$, find
(a) $(f g)^{\prime}(3)$
(b) $\left(\frac{f}{g}\right)^{\prime}(3)$
(c) $(f \circ g)^{\prime}(3)$
5. Find the equation of the tangent line to

$$
f(x)=x^{6} \sqrt{5 x^{2}-1}
$$

at $x=1$.
6. Find the second derivative of the function

$$
f(x)=\frac{1}{\left(x^{2}+1\right)^{2}}
$$

Answer Key

1. (a) $f^{\prime}(x)=60 x^{4}-340 x^{3}+21 x^{2}+216 x-9$
(b) $f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}-x^{-2}-\frac{5}{3} x^{\frac{-2}{3}}-\frac{85}{6} x^{\frac{11}{6}}$
2. (a) $\frac{12 x^{2}(3-x)}{(2-x)^{2}}$
(b) $\frac{4 x^{5}+4 x^{3}-6 x^{2}+3}{\left(2 x^{2}+1\right)^{2}}$
3. (a) $f^{\prime}(x)=4\left(6 x^{2}+7 x\right)^{3}(12 x+7)$
(b) $f^{\prime}(x)=\frac{-4 x}{\left(1-8 x^{2}\right)^{\frac{3}{4}}}$
4. (a) $(f g)^{\prime}(3)=58$.
(b) $\left(\frac{f}{g}\right)^{\prime}(3)=\frac{82}{9}$.
(c) $(f \circ g)^{\prime}(3)=-40$.
5. $y=\frac{29}{2} x-\frac{25}{2}$
6. $f^{\prime \prime}(x)=\frac{20 x^{2}-4}{\left(x^{2}+1\right)^{4}}$

Solutions

1. (a) By the product rule,

$$
\begin{aligned}
f^{\prime}(x) & =(24 x-1)\left(x^{3}-7 x^{2}+9\right)+\left(12 x^{2}-x\right)\left(3 x^{2}-14 x\right) \\
& =24 x^{4}-168 x^{3}+216 x-x^{3}+7 x^{2}-9+36 x^{4}-168 x^{3}-3 x^{3}+14 x^{2} \\
& =60 x^{4}-340 x^{3}+21 x^{2}+216 x-9
\end{aligned}
$$

(b) Notice that

$$
f(x)=\left(1+x^{\frac{5}{2}}\right)\left(x^{-1}-5 x^{\frac{1}{3}}\right)
$$

It follows that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{5}{2} x^{\frac{3}{2}}\left(x^{-1}-5 x^{\frac{1}{3}}\right)+\left(1+x^{\frac{5}{2}}\right)\left(-x^{-2}-\frac{5}{3} x^{\frac{-2}{3}}\right) \\
& =\frac{5}{2} x^{\frac{1}{2}}-\frac{25}{2} x^{\frac{11}{6}}-x^{-2}-\frac{5}{3} x^{\frac{-2}{3}}-x^{\frac{1}{2}}-\frac{5}{3} x^{\frac{11}{6}} \\
& =\frac{3}{2} x^{\frac{1}{2}}-x^{-2}-\frac{5}{3} x^{\frac{-2}{3}}-\frac{85}{6} x^{\frac{11}{6}}
\end{aligned}
$$

2. (a) By the quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{18 x^{2}(2-x)-6 x^{3}(-1)}{(2-x)^{2}} \\
& =\frac{36 x^{2}-12 x^{3}}{(2-x)^{2}} \\
& =\frac{12 x^{2}(3-x)}{(2-x)^{2}}
\end{aligned}
$$

(b) By the quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(3+4 x^{3}\right)\left(2 x^{2}+1\right)-\left(3 x+x^{4}\right)(4 x)}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{6 x^{2}+3+8 x^{5}+4 x^{3}-12 x^{2}-4 x^{5}}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{4 x^{5}+4 x^{3}-6 x^{2}+3}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
$$

3. (a) By the chain rule, $f^{\prime}(x)=4\left(6 x^{2}+7 x\right)^{3}(12 x+7)$.
(b) Notice that

$$
f(x)=\left(1-8 x^{2}\right)^{\frac{1}{4}}
$$

By the chain rule,

$$
f^{\prime}(x)=\frac{1}{4}\left(1-8 x^{2}\right)^{\frac{-3}{4}}(-16 x)=\frac{-4 x}{\left(1-8 x^{2}\right)^{\frac{3}{4}}} .
$$

4. (a) By the product rule,

$$
(f g)^{\prime}(3)=f^{\prime}(3) g(3)+f(3) g^{\prime}(3)=10(7)+3(-4)=70-12=58
$$

(b) By the quotient rule,

$$
\left(\frac{f}{g}\right)^{\prime}(3)=\frac{f^{\prime}(3) g(3)-f(3) g^{\prime}(3)}{g(3)^{2}}=\frac{10(7)-3(-4)}{3^{2}}=\frac{82}{9} .
$$

(c) By the chain rule,

$$
(f \circ g)^{\prime}(3)=f(g(3)) g^{\prime}(3)=f(3) *(-4)=10(-4)=-40 .
$$

5. By the product rule and chain rule,

$$
f^{\prime}(x)=6 x^{5}\left(\sqrt{5 x^{2}-1}\right)+x^{6}\left(5 x^{2}-1\right)^{\frac{-1}{2}}(10 x)
$$

It follows that $f^{\prime}(1)=\frac{29}{2}$. Since $f(1)=2$, the point-slope formula implies that the equation of the tangent line is

$$
y-2=\frac{29}{2}(x-1) .
$$

It follows that the equation of the tangent line is

$$
y=\frac{29}{2} x-\frac{25}{2}
$$

6. Notice that

$$
f(x)=\left(x^{2}+1\right)^{-2}
$$

By the chain rule, the first derivative is

$$
f^{\prime}(x)=-2\left(x^{2}+1\right)^{-3}(2 x)=\frac{-4 x}{\left(x^{2}+1\right)^{3}}
$$

The quotient rule and chain rule imply that

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{-4\left(x^{2}+1\right)^{3}+12 x\left(x^{2}+1\right)^{2}(2 x)}{\left(x^{2}+1\right)^{6}} \\
& =\frac{\left(x^{2}+1\right)^{2}\left(-4\left(x^{2}+1\right)+24 x^{2}\right)}{\left(x^{2}+1\right)^{6}} \\
& =\frac{20 x^{2}-4}{\left(x^{2}+1\right)^{4}}
\end{aligned}
$$

