MAT122 HW10-12

Problems

1. Use the definition of the derivative to calculate derivative of

$$
f(x)=4 x^{2}-7 x
$$

at $x=1$.
2. Use the definition of the derivative to calculate derivative of

$$
f(x)=\frac{1}{x-1}
$$

at $x=2$.
3. Use the definition of the derivative to calculate the derivative of

$$
f(x)=\sqrt{1-9 x} .
$$

4. Use the definition of the derivative to calculate the derivative of

$$
f(x)=x+\frac{1}{x} .
$$

5. Compute the derivatives of the following functions:
(a) $f(x)=x^{\frac{2}{3}}+x^{\frac{-2}{3}}$.
(b) $f(x)=7 x^{3}+2 \sqrt{x^{5}}-8 x+\frac{7}{x}$
(c) $f(x)=\frac{x^{2}+3 x+27}{x^{2}}$

Answer Key

1. $f^{\prime}(1)=1$
2. $f^{\prime}(2)=-1$
3. $f^{\prime}(x)=\frac{-9}{2 \sqrt{1-9 x}}$
4. $f^{\prime}(x)=\frac{x^{2}-1}{x^{2}}$
5. (a) $f^{\prime}(x)=\frac{2}{3} x^{\frac{-1}{3}}-\frac{2}{3} x^{\frac{-5}{3}}$
(b) $f^{\prime}(x)=21 x^{2}+\frac{5}{2} x^{\frac{3}{2}}-8-7 x^{-2}$
(c) $f^{\prime}(x)=-3 x^{-2}-54 x^{-3}$

Solutions

1. By definition of the derivative,

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4(1+h)^{2}-7(1+h)-(-3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+8 h+4 h^{2}-7-7 h+3}{h} \\
& =\lim _{h \rightarrow 0} \frac{h-4 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-4 h}{1} \\
& =1
\end{aligned}
$$

2. By definition of the derivative,

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{1+h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{1+h} \\
& =-1
\end{aligned}
$$

3. By definition of the derivative,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1-9(x+h)}-\sqrt{1-9 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1-9(x+h)}-\sqrt{1-9 x}}{h} \frac{\sqrt{1-9(x+h)}+\sqrt{1-9 x}}{\sqrt{1-9(x+h)}+\sqrt{1-9 x}} \\
& =\lim _{h \rightarrow 0} \frac{1-9(x+h)-(1-9 x)}{h \sqrt{1-9(x+h)}+\sqrt{1-9 x}} \\
& =\lim _{h \rightarrow 0} \frac{-9}{\sqrt{1-9(x+h)}+\sqrt{1-9 x}} \\
& =\frac{-9}{2 \sqrt{1-9 x}}
\end{aligned}
$$

4. Notice that

$$
x+\frac{1}{x}=\frac{x^{2}+1}{x} .
$$

By definition of the derivative,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(x+h)^{2}+1}{(x+h)}-\frac{x^{2}+1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x\left(x^{2}+2 x h+h^{2}+1\right)-(x+h)\left(x^{2}+1\right)}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+2 x^{2} h+x h^{2}+x-\left(x^{3}+x+x^{2} h-h\right)}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{x^{2} h+x h^{2}-h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{h\left(x^{2}+x h-1\right)}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+x h-1}{x(x+h)} \\
& =\frac{x^{2}+x(0)-1}{x(x+0)} \\
& =\frac{x^{2}-1}{x^{2}}
\end{aligned}
$$

5. (a) By the power rule,

$$
f^{\prime}(x)=\frac{2}{3} x^{\frac{-1}{3}}-\frac{2}{3} x^{\frac{-5}{3}}
$$

(b) Notice that

$$
f(x)=7 x^{3}+x^{\frac{5}{2}}-8 x+7 x^{-1}
$$

It follows from the power rule that

$$
f^{\prime}(x)=21 x^{2}+\frac{5}{2} x^{\frac{3}{2}}-8-7 x^{-2}
$$

(c) Notice that

$$
f(x)=1+3 x^{-1}+27 x^{-2}
$$

It follows from the power rule that

$$
f^{\prime}(x)=-3 x^{-2}-54 x^{-3}
$$

