MAT122 HW5-6

Problems

1. Find the range of the function $f(x)=3 x^{2}+6 x+8$.
2. Given the function

$$
f(x)=\frac{x^{2}-9}{x^{2}-2 x-8},
$$

Find all intercepts and vertical asymptotes.
3. If $\$ 10,000$ is invested at an annual rate of 5% and is compounded continuously, the amount of money at time t is given by

$$
A(t)=10,000 e^{.05 t}
$$

How long does it take for your investment to double?
4. The amount of bacteria at time t can be described by the equation

$$
B(t)=B_{0} e^{r t}
$$

where B_{0} is the initial amount of bacteria and r is the rate of growth. If there are initially 8000 bacteria and after 7 hours, there are 24,000 bacteria, what is the rate of growth r ?
5. The population in Springfield, IL, starting from 2010, is given by the following table:

Years from 2010	0	1	2	3	4	5
Population	46,080	47,080	48,040	49,020	50,050	51,000

Find a linear model which approximates the population growth.

Answer Key

1. $[5, \infty)$
2. The y-intercept is $\left(0,-\frac{9}{8}\right)$. The x-intercepts are $\left.(3,0),(-3,0)\right)$. The vertical asymptotes occur at $x=-2$ and $x=4$.
3. $t=\frac{\ln (2)}{.05} \approx 13.9$ years
4. $r=\frac{\ln (3)}{7} \approx .157$
5. $y=104 t+46,080$

Solutions

1. The x-coordinate of the vertex of the parabola is given by

$$
x=-\frac{6}{2(3)}=-1
$$

It follows that the y-coordinate of the vertex is given by

$$
f(-1)=3(-1)^{2}+6(-1)+8=3-6+8=5
$$

Since the coefficient in front of the x^{2} term is positive, the vertex is a minimum. It follows that the range of $f(x)$ is $[5, \infty)$.
2. The y-intercept is given by

$$
f(0)=\frac{0^{2}-9}{0^{2}-2(0)-8}=-\frac{9}{8} .
$$

The vertical asymptotes occur when the denominator is equal to 0 . This occurs when

$$
0=x^{2}-2 x-8=(x-4)(x+2)
$$

So the vertical asymptotes occur at $x=-2$ and $x=4$.
The x -intercepts occur when the numerator is equal to 0 and the denominator is not equal to 0 . This occurs when

$$
0=x^{2}-9=(x-3)(x+3)
$$

It follows that the x -intercepts occur at $x=-3$ and $x=3$.
3. If the investment doubles, we have the equation

$$
20,000=10,000 e^{.05 t}
$$

This simplifies to $2=e^{.05 t}$. Solving for t gives

$$
t=\frac{\ln (2)}{.05} \approx 13.9 \text { years. }
$$

4. Since there are initially 8000 bacteria, $B_{0}=8000$. Since there are 24,000 bacteria after 7 hours, we have the equation

$$
24,000=8000 e^{7 r} .
$$

This simplifies to $3=e^{7 r}$. Solving for r gives

$$
r=\frac{\ln (3)}{7} \approx .157 .
$$

5. To find the slope of the linear model, we take the average of the differences divided by the total change in time. This is given by

$$
m=\frac{100+60+80+130+150}{5}=104
$$

Since the y-intercept is given when $t=0$, the equation for the linear model is

$$
y=104 t+46,080
$$

