MAT122 Homework 1-4

Problems

1. Let $f(x)=3+5 x-x^{2}$. Perform the following function evaluations:
(a) $f(-1)$
(b) $f(0)$
(c) $f(1)$
(d) $f(x+h)$
2. If $f(x)=5+2 x$ and $g(x)=8-2 x$,
(a) $(f \circ g)(x)$,
(b) $(g \circ f)(x)$
3. Find the domain and range of the following functions:
(a) $f(x)=3+\sqrt{x^{2}+4}$
(b) $f(x)=5-|8-x|$
4. Find the domain of the following functions:
(a) $f(x)=\frac{5}{x^{3}+10 x^{2}+9 x}$
(b) $f(x)=\frac{4}{x-2}-\sqrt{x^{2}-1}$
5. Find the equation of the line with slope 2 passing through the ordered pair $(x, y)=(1,4)$.
6. Find the equation of the line passing through the ordered pairs $\left(x_{1}, y_{1}\right)=$ $(-1,3),\left(x_{2}, y_{2}\right)=(1,6)$.
7. A shirt has been marked down 30% and is now on sale for $\$ 15$. How much was the original price of the shirt?

Answer Key

1. (a) $f(-1)=-3$
(b) $f(0)=3$
(c) $f(1)=7$
(d) $f(x+h)=3+5(x+h)-(x+h)^{2}$
2. (a) $(f \circ g)(x)=21-4 x$.
(b) $(g \circ f)(x)=-2-4 x$.
3. (a) Domain: $(-\infty, \infty)$, Range: $[5, \infty)$
(b) Domain: $(-\infty, \infty)$, Range: $(-\infty, 5]$
4. (a) $(-\infty,-9) \cup(-9,-1) \cup(-1,0) \cup(0, \infty)$
(b) $(-\infty,-1) \cup(1,2) \cup(2, \infty)$
5. $y=2 x+2$
6. $y=\frac{3}{2} x+\frac{9}{2}$
7. The original price is $\$ 20$

Solutions

1. (a) $f(-1)=3+5(-1)-(-1)^{2}=3-5-1=-3$
(b) $f(0)=3+5(0)-(0)^{2}=3$
(c) $f(1)=3+5(1)-(1)^{2}=3+5-1=7$
(d) $f(x+h)=3+5(x+h)-(x+h)^{2}$
2. (a) $(f \circ g)(x)=f(8-2 x)=5+2(8-2 x)=5+16-4 x=21-4 x$.
(b) $(g \circ f)(x)=g(5+2 x)=8-2(5+2 x)=8-10-4 x=-2-4 x$.
3. (a) To find the domain of f, recall that the domain of \sqrt{x} is $[0, \infty)$. It follows that we must have $x^{2}+1>0$. Since this is true for all real numbers, the domain of $f(x)$ is $(-\infty, \infty)$.
Since the range of x^{2} is $[0, \infty)$, the range of $x^{2}+4$ is $[4, \infty)$. It follows that the range of $\sqrt{x^{2}+4}$ is $[2, \infty)$. We conclude that the range of $f(x)$ is $[5, \infty)$.
(b) Since the domain of $|x|$ is $(-\infty, \infty)$, the domain of $|8-x|$ is $-\infty, \infty)$. It follows that the domain of $f(x)$ is $(-\infty, \infty)$.
Since range of $-|8-x|$ is $(-\infty, 0]$, the range of $f(x)$ is $(-\infty, 5]$.
4. (a) Notice that the denominator can be factored as

$$
x^{3}+10 x^{2}+9 x=x\left(x^{2}+10 x+9\right)=x(x+9)(x+1)
$$

Since the denominator of the fraction cannot be 0 , the domain of $f(x)$ is all real numbers except $x=0,-1,-9$. In interval notation, the domain of $f(x)$ is written as

$$
(-\infty,-9) \cup(-9,-1) \cup(-1,0) \cup(0, \infty)
$$

(b) The fraction $\frac{4}{x-2}$ is undefined when $x=2$. The function $\sqrt{x^{2}-1}$ is undefined when $x^{2}-1<0$. This occurs for all x in the interval $(-1,1)$. It follows that the domain for f is

$$
(-\infty,-1) \cup(1,2) \cup(2, \infty)
$$

5. Using the point-slope formula

$$
y-4=2(x-1)=2 x-2 .
$$

It follows that $y=2 x+2$.
6. Using the formula for the slope

$$
m=\frac{6-3}{1-(-1)}=\frac{3}{2}
$$

Using the point-slope formula,

$$
y-3=\frac{3}{2}(x-(-1))=\frac{3}{2} x+\frac{3}{2} .
$$

It follows that $y=\frac{3}{2} x+\frac{9}{2}$
7. If p is the original price of the shirt, then

$$
p-.3 p=15
$$

It follows that $.7 p=15$. Solving for p gives $p=\$ 20$.

