Student: Date:		Instructor: Deb Wertz Course: MAP102 MASTER	Assignment: Homework #7
1.	State the base of the exponent 8 in the $(-6)^8$ The base of the exponent 8 is		
2.	State the base of the exponent 4 in the	e expression.	
3.	State the base of the exponent 7 in the cx ⁷ The base of the exponent 7 is	e expression.	
4.	Select the answer that best completes A(n) (1) is a shorthar (1) O absolute value O square root O base O exponent		າ of the same number.
5.	Select the correct choices that complete $\ln (-5)^2$, the 2 is the (1)	and the -5 is the (2)	
6.	Evaluate. -9^{2} $-9^{2} = $		
7.	Evaluate. $(-2)^2$ $(-2)^2 = $		

8. Find the value of the expression.

$$\left(-\frac{1}{10}\right)^3$$

$$\left(-\frac{1}{10}\right)^3 = \underline{\hspace{1cm}}$$
(Simplify your answer.)

9. Write the expression with positive exponents.

$$4a^{-1}u^{-3} =$$
 (Simplify your answer.)

10. Write the expression with positive exponents.

$$a^{3}b^{-1}c^{-9}$$

$$a^3b^{-1}c^{-9} =$$
 (Simplify your answer.)

11. Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

$$\frac{p^{-5}}{q^{-7}}$$

$$\frac{p^{-5}}{q^{-7}} =$$
 (Simplify your answer.)

12. Evaluate the following. Assume that all bases are not equal to 0.

$$(-2x+8)^0$$

$$(-2x+8)^{0}$$
$$(-2x+8)^{0} = \underline{\hspace{1cm}}$$

13. Evaluate the expression. Assume that all bases are not equal to 0.

$$-5x^0$$

$$-5x^0 =$$
 (Simplify your answer.)

14. Evaluate the expression. Assume that all bases are not equal to 0.

$$3x^{0} + 5$$

$$3x^{0} + 5 =$$
(Simplify your answer.)

Simplify. Use positive exponents for any variables.				
9 ⁻²				
9 ⁻² = (Type an integer or a simplified fraction.)				
Simplify. Use positive exponents for any variables.				
$(-3)^{-3}$				
$(-3)^{-3} =$				
(Type an integer or a fraction.)				
Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.				
$9x^{-2}$				
$9x^{-2} =$ (Simplify your answer.)				
Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.				
$4^0 - 3x^0$				
$4^0 - 3x^0 = $				
implify. Use positive exponents for any variables.				
$3^{-1} + 2^{-2}$				
3 ⁻¹ + 2 ⁻² =				
(Type an integer or a simplified fraction.)				
Simplify. Use positive exponents for any variables.				
5 ⁻² •y				

 $5^{-2} \cdot y =$ (Simplify your answer. Use integers or fractions for any numbers in the expression.)

16
2. 8
3. x
4. (1) exponent
5. (1) exponent (2) base.
681
7. 4
8 1/1000
$9. \frac{4}{au^3}$
10. $\frac{a^3}{bc^9}$
11. $\frac{q^7}{p^5}$
12. 1
135
14. 8
15. <u>1</u> 81

16.		1
	-	27

- 17. $\frac{9}{x^2}$
- 18. -2
- 19. <u>7</u> 12
- 20. <u>y</u> 25