## Lecture 30

# Parabolas

| Juadratic functions                             | 2  |
|-------------------------------------------------|----|
| What is the graph                               | 3  |
| Geometry of a parabola                          | 4  |
| Horns: upward or downward                       | 5  |
| Vertex and axis of symmetry                     | 6  |
| The $m{x}$ -intercepts                          | 7  |
| The $\emph{y}$ -intercept                       | 8  |
| Wide or narrow?                                 | 9  |
| What do we need to sketch a parabola?           | 10 |
| How to find the vertex                          | 11 |
| How to find the vertex and the axis of symmetry | 12 |
| How to find the vertex and the axis of symmetry | 13 |
| How to find the $x$ -intercepts                 | 14 |
| How to find the $y$ -intercept                  | 15 |
| Step-by-step instruction for drawing a parabola | 16 |
| Example $1$                                     | 17 |
| Example $1$                                     | 18 |
| Example $1$                                     | 19 |
| Example 2                                       | 20 |
| Example 2                                       | 21 |
| The graph of a quadratic monomial               | 22 |
| The graph of a quadratic monomial               | 23 |
| Summary                                         | 24 |

#### **Quadratic functions**

A quadratic function is a function  $y = ax^2 + bx + c$ , where a, b, c are given numbers and  $a \neq 0$ .

**Examples** of quadratic functions:  $y = x^2$ 

$$y = x^2 + x$$

$$y = -3x^2 + 2x - 5$$

$$y = \frac{1}{3}x^2 - \sqrt{2}x + 1$$

Functions and, in particular, quadratic functions, are studied in the precalculus and calculus courses.

In this lecture we will learn how to draw the graph of a quadratic function.

The graph of a function provides a **visualization** of various properties of the function, and helps to understand these properties.

2 / 24

#### What is the graph

The **graph** of a quadratic function  $y=ax^2+bx+c$  is the set of all points on the plane whose coordinates (x,y) satisfy the equation  $y=ax^2+bx+c$ .

The graph of a quadratic function is a plane curve, it is called a parabola.

Here are a few examples of parabolas:







In this lecture, we will learn how to draw a parabola by its equation.

## Geometry of a parabola

Any parabola has certain geometric elements which are common for all parabolas.

Let us have a look on a typical parabola:



Which geometric elements do we observe on this parabola?

4 / 24

## Horns: upward or downward

A parabola has its "horns" turned **upward** or **downward**. (A parabola opens upward or downward.)





It is the coefficient a (called the **leading coefficient**) which is responsible for this.

- If a > 0, then the parabola opens **upward**
- If a < 0, then the parabola opens **downward**

#### Vertex and axis of symmetry

There is a characteristic point on a parabola, where the parabola makes a turn.





This point is called the vertex.

The vertex is the **lowest** point on the parabola if a>0, and the **highest** point if a<0.

A vertical line passing through the vertex is called the **axis of symmetry**, because a parabola is symmetric about its axis of symmetry.

6 / 24

#### The x-intercepts

The points where the parabola intersects the x-axis, are called the x-intercepts.



A parabola may have **two**, **one**, or **no** x-intercepts.







## The y-intercept

A point where the parabola intersects the y-axis is called the y-intercept.



Each parabola has exactly **one** y-intercept.

8 / 24

#### Wide or narrow?

Some parabolas are wider than others:



|a| is responsible

for the width of the parabola

The smaller |a|,

the wider the parabola.

#### What do we need to sketch a parabola?

- the vertex
- the axis of symmetry
- the sign of a (upward or downward)
- the y-intercept
- the x-intercepts (if any)

**Example.** Sketch a parabola which opens downward, has the vertex at (-1,3), the y-intercept at (0,9/4), and the x-intercepts at (-3,0) and (1,0).

Solution.



10 / 24

#### How to find the vertex

The vertex of the parabola  $y = ax^2 + bx + c$  is located

at the point with coordinates  $\left(-\frac{b}{2a}, -\frac{b^2}{4a} + c\right)$ .

Why is this so? Rewrite the equation of the parabola using completing the square

$$y = ax^2 + bx + c \iff y = a\left(x + \frac{b}{2a}\right)^2 + \left(-\frac{b^2}{4a} + c\right)$$

If a > 0, then the vertex is located at the **lowest** point on the parabola,

that is at the point, where y takes the **minimal** value. Since  $a\left(x+\frac{b}{2a}\right)^2\geq 0$  for all x, the minimal value of  $y=a\left(x+\frac{b}{2a}\right)^2+\left(-\frac{b^2}{4a}+c\right)$  occurs exactly when  $\left(x + \frac{b}{2a}\right)^2 = 0$ , that is when  $x = -\frac{b}{2a}$ .

Therefore, the vertex is located at  $\left(-\frac{b}{2a}, -\frac{b^2}{4a} + c\right)$ .

#### How to find the vertex and the axis of symmetry

If a < 0, then the vertex is located at the **highest** point on the parabola,

that is at the point, where y takes the **maximal** value. Since  $a\left(x+\frac{b}{2a}\right)^2\leq 0$  for all x, the maximal value of  $y=a\left(x+\frac{b}{2a}\right)^2+\left(-\frac{b^2}{4a}+c\right)$  occurs exactly when  $\left(x+\frac{b}{2a}\right)^z=0$  , that is when  $\,x=-\frac{b}{2a}\,.$ 

Therefore, the vertex is located at  $\left(-\frac{b}{2a}, -\frac{b^2}{4a} + c\right)$ . Remember that

> The **vertex** of the parabola  $y = ax^2 + bx + c$ is located at the point where  $x = \frac{-b}{2a}$ .

The axis of symmetry is the vertical line passing through the vertex.

Its equation is x = -

12 / 24

#### How to find the vertex and the axis of symmetry

**Example.** Find the vertex and the axis of symmetry of the parabola  $y = x^2 - 4x + 1$ .

**Solution.** The x-coordinate of the vertex is

$$x = \frac{-b}{2a} = \frac{-(-4)}{2 \cdot 1} = \frac{4}{2} = 2$$
.

To find the y-coordinate of the vertex, we plug in x=2 into the equation of the parabola:

$$y = 2^2 - 4 \cdot 2 + 1 = 4 - 8 + 1 = -3$$
.

Therefore, the **vertex** of the parabola is at the point with coordinates (2, -3).

The axis of symmetry is the vertical line x = 2.

## How to find the x-intercepts

The x-intercepts are the points where the parabola meets the x-axis.







A parabola may have two, one or no x-intercepts.

At x-intercept, the y-value is equal to 0. Therefore,

To find the *x*-intercepts of the parabola  $y = ax^2 + bx + c$ , solve the equation  $ax^2 + bx + c = 0$ .

If the quadratic equation  $ax^2 + bx + c = 0$  has **two** roots,

then the parabola intersects the x-axis at **two** points.

If the equation has **one** root, then the parabola touches the x-axis at **one** point.

If the equation has **no** roots, then the parabola does **not** intersect the x-axis.

14 / 24

## How to find the y-intercept

The y-intercept is easy to find.



This is the point where the parabola intersects the y axis.

At this point, the x-coordinate equals 0.

viii

When we plug x = 0 into the equation of the parabola  $ax^2 + bx + c$ , we get

$$y = a \cdot 0^2 + b \cdot 0 + c = c.$$

Therefore,

The y-intercept of the parabola  $y=ax^2+bx+c$  is located at the point (0,c)

#### Step-by-step instruction for drawing a parabola

To draw the parabola  $y = ax^2 + bx + c$ ,

- Determine the **vertex**. It's located at the point where  $x = \frac{-b}{2a}$ .
- Draw the axis of symmetry. It's the vertical line  $x = \frac{-b}{2a}$ .
- Determine if the parabola opens **upward** ( a > 0 ) or **downward** ( a < 0 ).
- ullet Determine the y-intercept. It's located at the point (0,c) .
- Determine the x-intercepts (if any). They are located at the points  $(x_{1,2},0)$ ,

where 
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Draw the parabola, using the information above.
Make sure that your parabola is smooth and symmetric.

16 / 24

#### Example 1

**Example 1.** For the parabola  $y = x^2 - x - 2$ , determine the vertex, the axis of symmetry, the intercepts, and draw the graph.

Solution.

• The **vertex** is at  $x = \frac{-b}{2a} = \frac{-(-1)}{2} = \frac{1}{2}$ . The *y*-coordinate of the vertex is

$$y = \left(\frac{1}{2}\right)^2 - \frac{1}{2} - 2 = \frac{1}{4} - \frac{1}{2} - 2 = -9/4$$
. So the vertex is located at  $(1/2, -9/4)$ .

Draw the vertex.

• The axis of symmetry

is the vertical line x = 1/2.

Draw the axis of symmetry.



#### Example 1

ullet a=1>0 , therefore, the parabola opens **upward**.

Draw a small **sprout** of a parabola at the vertex.



- The y-intercept is at (0,c)=(0,-2).
- The x-intercepts are the roots of  $x^2 x 2 = 0$ .

$$x^{2} - x - 2 = 0 \iff (x+1)(x-2) = 0 \iff x = -1, \ x = 2.$$

So the x-intercepts are (-1,0) and (2,0).

18 / 24

# Example 1

Now we are ready to draw the parabola:



Be neat: the parabola should be smooth and symmetric.

#### Example 2.

**Example 2.** For the parabola  $y = -x^2 - 2x - 2$ , determine the vertex, the axis of symmetry, the intercepts, and draw the graph.

**Solution.** The vertex is at  $x = \frac{-b}{2a} = \frac{-(-2)}{2 \cdot (-1)} = -1$ .

The y-coordinate of the vertex is  $y=-(-1)^2-2\cdot(-1)-2=-1+2-2=-1$ . By this, the vertex is (-1,-1).

The axis of symmetry is x = -1

a=-1<0 , so the parabola opens downward

The *y*-intercept is (0, c) = (0, -2).

For the x-intercepts, solve the equation  $-x^2 - 2x - 2 = 0$ :

$$-x^2 - 2x - 2 = 0 \iff x^2 + 2x + 2 = 0.$$

The discriminant is  $b^2-4ac=2^2-4\cdot 1\cdot 2=-4<0$  .

Therefore, there are no solutions, and the parabola doesn't meet the x-axis.

20 / 24

### Example 2.

Now put all the information on the graph.



#### The graph of a quadratic monomial

What do we know about the graph of the parabola  $y = ax^2$ ?

- $\bullet \;\;$  The vertex at the origin  $\,(0,0)$  , since  $\;\; \frac{-b}{2a}=0$  .
- The axis of symmetry is the line x=0, that is, the y-axis.
- ullet The parabola opens upward if a>0, and downward if a<0.
- The y-intercept is (0,0).
- The only x-intercept is (0,0).

This information is not sufficient for a drawing.

We may need to plot a support point, say, (x,y)=(1,a) belonging to the parabola.

By symmetry, we get another point (x,y)=(-1,a) on the parabola.

22 / 24

## The graph of a quadratic monomial

Let us draw several parabolas  $\,y=ax^2\,$  with different coefficients  $\,a\,.$ 



## **Summary**

In this lecture, we have learned

- what the **graph** of a quadratic function is
- what a parabola looks like
- what the essential **geometric elements** of the parabola are (vertex, axis of symmetry, intercepts)
- when a parabola opens **upward** ( a>0 ) or **downward** ( a<0 )
- ✓ how to find the vertex and the axis of symmetry of a parabola
- $\bullet$  how to find the x-intercepts (if any) and the y-intercept of a parabola
- ✓ how to draw the parabola from its equation
- ✓ how to draw the graph of a quadratic monomial