Lecture 24

Radicals

Squares and square roots
Definition of radical
Radicals and perfect squares
Precautions
Taking principal square root is opposite to squaring
Properties of radicals
What is $\sqrt{x^2}$?
Why $\sqrt{x+y} eq \sqrt{x} + \sqrt{y}$?
Simplest radical form
Simplest radical form
Operating with radical expressions
Summary

Squares and square roots

A number and its opposite have the same square:

for example,
$$3^2 = 9$$
 and $(-3)^2 = 9$.

Number 9 is called the **square** of 3 (or -3).

Numbers 3 and -3 are called the **square roots** of 9.

Let a be a non-negative number. A **square root of** a is a number b such that $b^2 = a$. If a is positive, then there are two numbers, b and -b, whose square is a:

If a=0, then there is only one number, 0, whose square is $0: 0=0^2$.

2 / 13

Definition of radical

Let a be a non-negative number.

The **principal square root** of a is a non-negative number b such that $b^2 = a$.

principal square root

Notation for the principal square root: $\sqrt{a} = b$

The symbol $\sqrt{}$ is called a **radical sign**.

The formula $\sqrt{a} = b$ reads "the square root of a is equal to b".

By definition, $\sqrt{a} = b \iff b^2 = a$ for non-negative a and b.

Radicals and perfect squares

```
Examples. \sqrt{0}=0 since 0^2=0, \sqrt{1}=1 since 1^2=1, \sqrt{4}=2 since 2^2=4, \sqrt{9}=3 since 3^2=9, \sqrt{16}=4 since 4^2=16.
```

A number a is called a **perfect square** if \sqrt{a} is an integer.

Here are some perfect squares: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

4 / 13

Precautions

• When we work with **real numbers**, the number under the radical sign should be **non-negative**: \sqrt{a} is defined only for $a \ge 0$.

For example, $\sqrt{-9}$ is **not** defined.

• A square root is always **non-negative**: $\sqrt{a} \ge 0$.

For example, it is **incorrect** to write $\sqrt{9}=-3$, since $\sqrt{9}$, by definition, should be non-negative.

Taking principal square root is opposite to squaring

It means that $\sqrt{3^2} = 3$ and $(\sqrt{9})^2 = 9$.

For any **non-negative** a, $\sqrt{a^2} = a$ and $(\sqrt{a})^2 = a$.

Example. Find the value of the following expressions:

$$\sqrt{5^2}$$
, $\sqrt{(-5)^2}$, $\sqrt{-5^2}$, $(\sqrt{5})^2$, $(-\sqrt{5})^2$, $(\sqrt{-5})^2$.

Solution. $\sqrt{5^2} = 5$, $\sqrt{(-5)^2} = \sqrt{5^2} = 5$, $\sqrt{-5^2} = \sqrt{-25}$ is undefined

$$(\sqrt{5})^2 = 5, \quad (-\sqrt{5})^2 = (\sqrt{5})^2 = 5, \quad (\sqrt{-5})^2 \quad \text{is undefined}$$

6 / 13

Properties of radicals

Let a,b be non-negative numbers. Then $\sqrt{a}\sqrt{b}=\sqrt{ab}$ and $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.

Indeed, $(\sqrt{a}\sqrt{b})^2=(\sqrt{a})^2(\sqrt{b})^2=ab$. Therefore, $\sqrt{a}\sqrt{b}=\sqrt{ab}$.

$$\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2 = \frac{(\sqrt{a})^2}{(\sqrt{b})^2} = \frac{a}{b} \,. \ \, \text{Therefore,} \ \, \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \,.$$

Example. Simplify the following expressions: $\sqrt{3}\sqrt{12}$, $\sqrt{75}$, $\frac{\sqrt{27}}{\sqrt{12}}$

Solution. $\sqrt{3}\sqrt{12} = \sqrt{3}\sqrt{3\cdot 4} = \sqrt{3}\sqrt{3}\sqrt{4} = (\sqrt{3})^2\sqrt{2^2} = 3\cdot 2 = 6$.

Another way to calculate: $\sqrt{3}\,\sqrt{12}=\sqrt{3\cdot 12}=\sqrt{36}=\sqrt{6^2}=6$.

$$\sqrt{75} = \sqrt{3 \cdot 25} = \sqrt{3 \cdot 5^2} = \sqrt{3}\sqrt{5^2} = \sqrt{3} \cdot 5 = 5\sqrt{3}.$$

$$\frac{\sqrt{27}}{\sqrt{12}} = \frac{\sqrt{3 \cdot 9}}{\sqrt{3 \cdot 4}} = \frac{\sqrt{3} \cdot \sqrt{9}}{\sqrt{3} \cdot \sqrt{4}} = \frac{\sqrt{3^2}}{\sqrt{2^2}} = \frac{3}{2}.$$

What is $\sqrt{x^2}$?

We know that x^2 is non-negative for any value of x. So $\sqrt{x^2}$ is defined.

Is it true that $\sqrt{x^2} = x$ for all x? No!

For **non-negative** x, $\sqrt{x^2} = x$ by definition of the radical.

For **negative** x, $\sqrt{x^2} = -x$, since -x > 0 and $(-x)^2 = x^2$.

Therefore, $\sqrt{x^2} = |x|$. Reminder: $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$

Example 1. $\sqrt{(-5)^2} = |-5| = 5$.

Example 2. Simplify the following expressions: $\sqrt{x^4}$, $\sqrt{x^6}$.

Solution. $\sqrt{x^4} = \sqrt{(x^2)^2} = |x^2| = x^2$

 $\sqrt{x^6} = \sqrt{(x^3)^2} = |x^3| = |x^2 \cdot x| = |x^2| \cdot |x| = x^2 \cdot |x|$

8 / 13

Why $\sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$?

It is **not** true that $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ for arbitrary x, y.

Indeed, if x = 9 and y = 16, then

$$\sqrt{x+y}\,\Big|_{x=9,\,y=16} = \sqrt{9+16} = \sqrt{25} = 5\,,$$
 while

$$(\sqrt{x} + \sqrt{y})\Big|_{x=9, y=16} = \sqrt{9} + \sqrt{16} = 3 + 4 = 7$$
 and $5 \neq 7$.

Are there any x , y for which $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$? Yes!

For example, x = y = 0: $\sqrt{0+0} = \sqrt{0} + \sqrt{0}$

or x = 1 and y = 0: $\sqrt{1+0} = \sqrt{1} + \sqrt{0}$.

Actually, $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ only if at least one of x , y is zero.

Simplest radical form

An expression involving radicals can be written in many different forms. For example,

$$\sqrt{\frac{4}{3}} = \frac{\sqrt{4}}{\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{2\sqrt{3}}{3}.$$

It is a custom to write radical expressions in a special form, which is called simplest radical form.

In simplest radical form, the expression

• doesn't contain perfect square factors:

$$\sqrt{12}$$
 is not in the simplest form, but $2\sqrt{3}$ is. ($\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}$)

• doesn't contain fractions under the radical:

$$\sqrt{\frac{3}{4}}$$
 is not in the simplest form, but $\frac{\sqrt{3}}{2}$ is. $\left(\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}\right)$

• doesn't contain radicals in denominators:

$$\frac{1}{\sqrt{2}}$$
 is not in the simplest form, but $\frac{\sqrt{2}}{2}$ is. $\left(\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}\right)$

10 / 13

Simplest radical form

Example. Bring the following expressions in simplest radical form:

$$\frac{1}{\sqrt{3}}$$
, $\sqrt{\frac{2}{5}}$, $\frac{1}{3-\sqrt{2}}$

Solution. $\frac{1}{\sqrt{3}} = \frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{3}}{(\sqrt{3})^2} = \frac{\sqrt{3}}{3}$

$$\sqrt{\frac{2}{5}} = \frac{\sqrt{2}}{\sqrt{5}} = \frac{\sqrt{2} \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{5}} = \frac{\sqrt{10}}{(\sqrt{5})^2} = \frac{\sqrt{10}}{5}$$

$$\frac{1}{3-\sqrt{2}} = \frac{1 \cdot (3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})} = \frac{3+\sqrt{2}}{3^2-(\sqrt{2})^2} = \frac{3+\sqrt{2}}{9-2} = \frac{3+\sqrt{2}}{7}$$

Remember: $(a-b)(a+b) = a^2 - b^2$, so

$$(3 - \sqrt{2})(3 + \sqrt{2}) = 3^2 - (\sqrt{2})^2$$

Operating with radical expressions

Example 1. Simplify the expression: $\sqrt{6}(\sqrt{18} - \sqrt{24})$

Solution. $\sqrt{6}(\sqrt{18}-\sqrt{24})=\sqrt{6}\sqrt{18}-\sqrt{6}\sqrt{24}=\sqrt{6\cdot 18}-\sqrt{6\cdot 24}=$

$$\sqrt{6 \cdot 6 \cdot 3} - \sqrt{6 \cdot 6 \cdot 4} = \sqrt{6^2 \cdot 3} - \sqrt{6^2 \cdot 2^2} = \sqrt{6^2} \sqrt{3} - \sqrt{6^2} \sqrt{2^2} = \sqrt{6^2} \sqrt{3} - \sqrt{6^2} \sqrt{3} - \sqrt{6^2} \sqrt{3} - \sqrt{6^2} \sqrt{3} - \sqrt{6^2} \sqrt{3} + \sqrt{6^2} \sqrt{3} - \sqrt{6^2} \sqrt{3} + \sqrt{6^2} \sqrt$$

$$6\sqrt{3} - 6 \cdot 2 = 6\sqrt{3} - 12.$$

Example 2. Bring the expression in simplest radical form: $\frac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}$.

Solution.

$$\frac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3\cdot2}-(\sqrt{3})^2}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}\sqrt{2}-(\sqrt{3})^2}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}(\sqrt{2}-\sqrt{3})}{\sqrt{3}-\sqrt{2}}$$
$$= \frac{\sqrt{3}(-1)(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}(-1)(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}} = -\sqrt{3}.$$

12 / 13

Summary

In this lecture, we have learned

- what the square roots of a non-negative number are
- what the principal square root is
- what the perfect squares are
- the defining identities for radical: $\sqrt{a^2} = a$ and $(\sqrt{a})^2 = a$

- what the simplest radical form is
- ✓ how to operate with radical expressions