Lecture 11

Rational Expressions

/hat a rational expressions is
valuation
ubstitution
ancellation
ancellation simplifies $\dots \dots \dots$
mplify before evaluating
omething may go wrong
/hy this happens and how to avoid
ummary

What a rational expressions is

A **rational expression** $\frac{p}{q}$ is a quotient of two polynomials p and q, where q is **non**-zero polynomial.

For example, $\frac{x+1}{x^2}$, $\frac{3x^3-x^2+x}{x^2+3x-2}$, $\frac{x}{1}$, $\frac{xy+2}{x^2+y^2}$ are rational expressions.

Any polynomial p(x) is a rational expression whose denominator is 1:

$$p(x) = \frac{p(x)}{1}.$$

In this lecture, we will learn how to:

- evaluate a rational expression at a number
- substitute an expression into a rational expression
- simplify rational expressions

2 / 10

Evaluation

Example. Find the value of the expression $\frac{-x^2+4}{x-3}$ for x=1, x=-1, x=3.

Solution. We have to substitute x = 1, -1, 3 into the expression.

$$\frac{-x^2+4}{x-3}\bigg|_{x=1} = \frac{-(1)^2+4}{(1)-3} = \frac{-1+4}{1-3} = \frac{3}{-2} = -\frac{3}{2}.$$

$$\frac{-x^2+4}{x-3}\bigg|_{x=-1} = \frac{-(-1)^2+4}{(-1)-3} = \frac{-1+4}{-1-3} = \frac{3}{-4} = -\frac{3}{4}.$$

$$\frac{-x^2+4}{x-3}\Big|_{x=3} = \frac{-(3)^2+4}{(3)-3} = \frac{-9+4}{0}$$
 Oops! Division by 0 is prohibited!

Therefore, the expression $\frac{-x^2+4}{x-3}$ is **not** defined for x=3 .

Substitution

Example 1. Find the value of the expression $\frac{x-1}{x^2+2x}$ for x=a-1.

Solution. We have to substitute a-1 for x into the expression $\frac{x-1}{x^2+2x}$. The result should be a new expression involving a, not x.

 $\left. \frac{x-1}{x^2+2x} \right|_{x=a-1} = \frac{(a-1)-1}{(a-1)^2+2(a-1)} = \frac{a-1-1}{a^2-2a+1+2a-2} = \frac{a-2}{a^2-1}.$

Short multiplication: $(a-1)^2 = a^2 - 2a + 1$

Example 2. Find the value of the expression $\frac{1}{xy}$ for $x=a^2$ and $y=a^{-3}$.

Solution. $\frac{1}{xy}\bigg|_{x=a^2, y=a^{-3}} = \frac{1}{a^2a^{-3}} = \frac{1}{a^{2-3}} = \frac{1}{a^{-1}} = a$.

4 / 10

Cancellation

Cancellation rule says that

one can cancel out a common factor both in numerator and denominator:

$$\frac{ac}{bc} = \frac{a\cancel{c}}{b\cancel{c}} = \frac{a}{b}.$$

Examples. $\frac{(x+1)(x-1)}{x+1} = \frac{(x+1)\cdot(x-1)}{(x+1)\cdot 1} = \frac{x-1}{1} = x-1.$

$$\frac{x^2 \cdot (x+1)^3}{x^5 \cdot (x+1)^2} = \frac{x^2 \cdot (x+1)^2 \cdot (x+1)}{x^2 \cdot x^3 \cdot (x+1)^2} = \frac{x+1}{x^3}.$$

Warning: It's incorrect to cancel out a common summand:

$$\frac{a+c}{b+c} \neq \frac{a}{b}$$
.

3

For example, $\frac{4}{5} = \frac{1+3}{2+3} \neq \frac{1}{2}$.

Cancellation simplifies

Factoring followed by cancellation is used to simplify rational expressions.

Example. Simplify the expression $\frac{x^2 - x}{x^2 - 1}$.

Solution. Both numerator and denominator may by factored:

In numerator $x^2 - x$, we factor out x:

$$x^2 - x = x(x-1).$$

To factor denominator, we use the **difference of squares** formula $x^2 - y^2 = (x - y)(x + y)$:

$$x^2 - 1 = x^2 - 1^2 = (x - 1)(x + 1)$$
.

Therefore,

$$\frac{x^2 - x}{x^2 - 1} = \frac{x(x - 1)}{(x - 1)(x + 1)} = \frac{x(x - 1)}{(x - 1)(x + 1)} = \frac{x}{x + 1}.$$

6 / 10

Simplify before evaluating

Simplify, if you can, before evaluating.

For example, if we need to evaluate $\frac{x^2-x}{x^2-1}$ at x=14 ,

then a straightforward evaluation is cumbersome:

$$\left. \frac{x^2 - x}{x^2 - 1} \right|_{x=14} = \frac{14^2 - 14}{14^2 - 1} = \frac{196 - 14}{196 - 1} = \frac{182}{195},$$

but it gets easier if we simplify first: $\frac{x^2-x}{x^2-1}=\frac{x(x-1)}{(x-1)(x+1)}=\frac{x}{x+1}$,

then evaluate: $\frac{x}{x+1}\Big|_{x=14} = \frac{14}{14+1} = \frac{14}{15}$. Is $\frac{182}{195} = \frac{14}{15}$?

Yes, because $\frac{182}{195} = \frac{14 \cdot \cancel{13}}{\cancel{13} \cdot 15} = \frac{14}{15}$.

Observe that $x - 1 \Big|_{x=14} = 14 - 1 = 13$.

Something may go wrong

Evaluate the same expression $\frac{x^2-x}{x^2-1}$ at x=1.

Using the same simplification $\frac{x^2-x}{x^2-1}=\frac{x(x-1)}{(x-1)(x+1)}=\frac{x}{x+1}$, we get

$$\left. \frac{x}{x+1} \right|_{x=1} = \frac{1}{1+1} = \frac{1}{2}$$

Using the original expression $\frac{x^2-x}{x^2-1}$, we get

$$\frac{x^2-x}{x^2-1}\Big|_{x=1}=\frac{1^2-1}{1^2-1}=\frac{0}{0}$$
 Oops! Division by $\frac{0}{0}$ is impossible!

$$\left. \frac{x^2 - x}{x^2 - 1} \right|_{x=1}$$
 is not defined, while $\left. \frac{x}{x+1} \right|_{x=1} = \frac{1}{2}$, although $\left. \frac{x^2 - x}{x^2 - 1} = \frac{x}{x+1} \right!$

8 / 10

Why this happens and how to avoid

How could this happen? Let us analyse our calculations:

$$\left. \frac{x^2 - x}{x^2 - 1} \right|_{x=1} = \frac{x(x-1)}{(x-1)(x+1)} \right|_{x=1} = \frac{(1)(1-1)}{(1-1)(1+1)} = \frac{1 \cdot 0}{0 \cdot 2}$$

It is OK to cancel out x-1 in $\frac{x(x-1)}{(x-1)(x+1)}$,

but $\left.x-1\right|_{x=1}=1-1=0$, and cancellation by $\left.0\right.$ is impossible!

It is useful and safe to simplify a rational expression $\frac{p(x)}{q(x)}$ prior to evaluating at x=a , if $q(a)\neq 0$.

Summary

In this lecture, we have learned

- what a rational expression is
- ✓ how to evaluate a rational expression at a number
- when a rational expression is **not** defined
- how to **substitute** an expression into a rational expression
- ✓ how to cancel a common factor
- ✓ how to simplify a rational expression