Lecture 10

Operations with Polynomials

minder: what is a polynomial?	2
Idition and subtraction	3
btraction	4
ultiplication	5
ort multiplication formulas	6
ctoring	7
ctoring out a monomial	8
fference of squares	9
aluation of a polynomial at a number	10
aluation of a polynomial at a number	11
bstitution	12
mmary	13

Reminder: what is a polynomial?

We learned in Lecture 9 that

A polynomial is an expression involving numbers, variables

and operations of addition, subtraction and multiplication.

Any polynomial in one variable can be written in the **standard form**

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where x is a variable, n is a non-negative integer,

and $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$ are **coefficients** (constants).

The highest power of x is called the **degree** of the polynomial.

In this lecture, we will learn how to operate with polynomials.

2 / 13

Addition and subtraction

If we add or subtract two polynomials, then the resulting expression is again a polynomial.

Example 1. Let $p = 2x^3 - 4x^2 + x - 1$ and $q = x^3 + 3x^2 - 4x + 2$ be two polynomials. Find p + q and p - q and put them in standard form.

Remark. We have given the polynomials the names, p and q.

It is common in mathematics to give short names to long expressions.

Solution.

$$p+q=\underbrace{(2x^3-4x^2+x-1)}_p+\underbrace{(x^3+3x^2-4x+2)}_q$$
 This is the sum. Put it in **standard form**:

$$= \underbrace{(2x^3+x^3) + (-4x^2+3x^2) + (x-4x) + (-1+2)}_{\text{standard form}} = \underbrace{3x^3-x^2-3x+1}_{\text{standard form}}.$$

Subtraction

Now we calculate p-q, where $p=2x^3-4x^2+x-1$ and $q=x^3+3x^2-4x+2$ as before.

$$p - q = \underbrace{(2x^3 - 4x^2 + x - 1)}_{p} - \underbrace{(x^3 + 3x^2 - 4x + 2)}_{q} =$$

$$2x^3 - 4x^2 + x - 1 - x^3 - 3x^2 + 4x - 2 =$$

$$(2x^3 - x^3) + (-4x^2 - 3x^2) + (x + 4x) + (-1 - 2) =$$

$$x^3 - 7x^2 + 5x - 3.$$

4 / 13

Multiplication

If we multiply two polynomials, then the resulting expression is a polynomial.

Example 1. Let p = 2x - 1 and $q = -x^2 + 3x + 4$ be two polynomials. Find the polynomial pq, put it in standard form and determine its degree.

Solution.

$$pq = (2x-1)(-x^2 + 3x + 4) =$$

$$2x(-x^2) + (2x)(3x) + (2x) \cdot 4 + (-1)(-x^2) + (-1)(3x) + (-1) \cdot 4 =$$

$$-2x^3 + 6x^2 + 8x + x^2 - 3x - 4 = -2x^3 + 7x^2 + 5x - 4.$$

Therefore, $pq = -2x^3 + 7x^2 + 5x - 4$. The degree of pq is 3.

In general, if p and q are polynomials of degree n and m respectively,

then their product pq has the degree n+m.

That is, when we multiply polynomials, their degrees are added.

Short multiplication formulas

$$(x+y)^2 = x^2 + 2xy + y^2 \quad \text{for any } x \text{ and } y$$

Indeed.

$$(x+y)^2 = (x+y)(x+y) = x \cdot x + \underbrace{x \cdot y + y \cdot x}_{2xy} + y \cdot y = x^2 + 2xy + y^2$$
.

This formula will save you an enormous amount of time. It's worth memorizing!

Examples.
$$(x+3)^2 = x^2 + 2x \cdot 3 + 3^2 = x^2 + 6x + 9$$
. $(3a+4b)^2 = (3a)^2 + 2(3a) \cdot (4b) + (4b)^2 = 9a^2 + 24ab + 16b^2$.

A similar formula for the difference:

$$(x-y)^2 = x^2 - 2xy + y^2$$
 for any x and y

Examples.
$$(xz-5)^2=(xz)^2-2(xz)\cdot 5+5^2=x^2z^2-10xz+25$$
 . $(2a-1)^2=(2a)^2-2(2a)\cdot (1)+1^2=4a^2-4a+1$.

6 / 13

Factoring

To **factor** a polynomial means to present the polynomial as a product of non-constant polynomials.

For example, we factor $3x^2 + x$ as follows:

$$3x^2 + x = x(3x + 1)$$
.

Factoring is opposite to multiplication:

$$x(3x+1)$$
 multiplication $3x^2 + x$ factoring

Multiplication of polynomials is straightforward:

given two polynomials, you can always multiply them.

Factoring may be difficult or impossible.

Factoring out a monomial

Example 1. Factor the polynomial $4x^3 + 5x^2$.

Solution. The monomials $4x^3$ and $5x^2$ have the common factor of x^2 :

We factor out x^2 :

$$4x^3 = x^2 \cdot 4x$$
 and $5x^2 = x^2 \cdot 5$.

$$4x^3 + 5x^2 = x^2 \cdot 4x + x^2 \cdot 5 = x^2(4x+5)$$
.

Example 2. Factor the polynomial $10x^3 + 6x^2 - 4x$.

Solution. The monomials $10x^3$, $6x^2$ and 4x have the common factor of 2x:

$$10x^3 = 2x \cdot 5x^2$$
, $6x^2 = 2x \cdot 3x$, and $4x = 2x \cdot 2$.

We factor out 2x:

$$10x^3 + 6x^2 - 4x = 2x \cdot 5x^2 + 2x \cdot 3x - 2x \cdot 2 = 2x(5x^2 + 3x - 2).$$

Remark. As we will learn later, the polynomial $5x^2 + 3x - 2$ can be factored further:

$$5x^2 + 3x - 2 = (5x - 2)(x + 1).$$

8 / 13

Difference of squares

$$x^2 - y^2 = (x - y)(x + y)$$
 for any x and y

Indeed.

$$(x+y)(x-y) = x \cdot x + x(-y) + y \cdot x + y(-y) = x^2 - xy + xy - y^2 = x^2 - y^2.$$

Example 1. Factor $x^2 - 1$.

Solution. $x^2 - 1 = x^2 - 1^2 = (x - 1)(x + 1)$.

Example 2. Factor $4 - a^2$.

Solution. $4 - a^2 = 2^2 - a^2 = (2 - a)(2 + a)$.

Example 3. Factor $9x^4 - y^6$.

Solution. $9x^4 - y^6 = (3x^2)^2 - (y^3)^2 = (3x^2 - y^3)(3x^2 + y^3)$.

Example 4. Factor $x^4 - 1$.

Solution. $x^4 - 1 = (x^2)^2 - 1^2 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1)$.

Evaluation of a polynomial at a number

Let p be a polynomial in a single variable x. As any expression, p may be evaluated at a number.

"Evaluating p at 2", say, means substituting 2 for every occurrence of x in p. This gives a number, the **value of** p at 2, which we denote by p(2).

The polynomial p itself can then also be denoted by p(x).

Example 1. Let $p(x) = 3x^2 - x + 4$. Find p(0), p(1), p(-2).

Solution. We have to **evaluate** the polynomial p(x) at numbers 0, 1, -2.

For this, we **substitute** (plug in) x = 0, x = 1, and x = -2, into p(x).

$$p(0) = p(x)\Big|_{x=0} = 3x^2 - x + 4\Big|_{x=0} = 3 \cdot 0^2 - 0 + 4 = 4.$$

$$p(1) = p(x)\Big|_{x=1} = 3x^2 - x + 4\Big|_{x=1} = 3 \cdot 1^2 - 1 + 4 = 3 - 1 + 4 = 6.$$

$$p(-2) = p(x)\Big|_{x=-2} = 3x^2 - x + 4\Big|_{x=-2} = 3 \cdot (-2)^2 - (-2) + 4 = 3 \cdot 4 + 2 + 4 = 12 + 2 + 4 = 18.$$

10 / 13

Evaluation of a polynomial at a number

Remark. The polynomial $p(x) = 3x^2 - x + 4$ describes the following algorithm:

$$x \xrightarrow{\text{multiply by } x} x^2 \xrightarrow{\text{multiply by } 3} 3x^2 \xrightarrow{\text{subtract } x} 3x^2 - x \xrightarrow{\text{add } 4} 3x^2 - x + 4$$

Evaluation of p(x) at a given number, say 1, is plugging x=1 into the algorithm:

$$1 \xrightarrow{\text{multiply by 1}} 1^2 \xrightarrow{\text{multiply by 3}} 3 \cdot 1^2 \xrightarrow{\text{subtract 1}} 3 \cdot 1^2 - 1 \xrightarrow{\text{add 4}} \underbrace{3 \cdot 1^2 - 1 + 4}_{6}$$

Note that p(x) does **not** mean $p \cdot (x)$. If p is a polynomial in the variable x, then p(x) is just another notation for p. We do **not** mean to multiply p by x!

Substitution

Example 1. Let $p(x) = -x^2 + 3x$. Find p(a), p(a-1), $p(a^2)$.

Remark. We have to substitute x = a, x = a - 1, $x = a^2$ into p(x).

This procedure is called a **substitution**. Substitution is like **evaluation**, but instead of a number, we plug in an algebraic **expression**.

Solution. $p(a) = -x^2 + 3x\Big|_{x=a} = -a^2 + 3a$.

$$p(a-1) = -x^{2} + 3x \Big|_{x=a-1} = -(a-1)^{2} + 3(a-1)$$
$$= -(a^{2} - 2a + 1) + 3(a-1)$$
$$= -a^{2} + 2a - 1 + 3a - 3 = -a^{2} + 5a - 4.$$

$$p(a^2) = -x^2 + 3x \Big|_{x=a^2} = -(a^2)^2 + 3a^2 = -a^4 + 3a^2.$$

12 / 13

Summary

In this lecture, we have learned

- ✓ how to add and subtract polynomials
- ✓ how to multiply polynomials
- formulas for **short multiplication**: $(x+y)^2 = x^2 + 2xy + y^2$ $(x-y)^2 = x^2 2xy + y^2$
- ✓ how to factor out monomials
- **T** the formula for **difference of squares**: $x^2 y^2 = (x y)(x + y)$
- ✓ how to evaluate a polynomial at a number
- ✓ how to substitute an expression into a polynomial