Lecture 7

Powers

Multiplying repeated factors	2
Exponential notation	3
When the base is negative	4
Zero and negative exponents	5
Zero and negative exponents	δ
Orill	7
Summary	8

Multiplying repeated factors

Abbreviations are common and useful.

For example, instead of 2+2+2+2+2 we can write $2 \cdot 5$:

$$2 \cdot 5 = 2 + 2 + 2 + 2 + 2$$
.

The sum of several equal numbers can be abbreviated to a product.

The product of several equal numbers can be **abbreviated** similarly:

instead of $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$, we can write 2^5 :

$$2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 .$$

In general,

$$x^n = \underbrace{x \cdot x \cdot x \cdot \dots \cdot x \cdot x}_{n \text{ times}}.$$

Here x is any number and n is a positive integer.

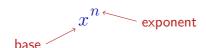
Examples.
$$x^4 = x \cdot x \cdot x \cdot x$$

$$10^2 = 10 \cdot 10 = 100$$

10 times

2 / 8

Exponential notation



We read x^n as "x to the nth."

n=2 and n=3 are special:

 x^2 is read as "x squared",

 x^3 as "x cubed".

Do you see why $x^1 = x$ for any x?

and why $1^n = 1$ for any positive integer n?

3 / 8

When the base is negative

Example 1.
$$(-1)^2 = (-1) \cdot (-1) = 1$$

 $(-1)^3 = (-1) \cdot (-1) \cdot (-1) = -1$.

In general, if n is **even** (n=0,2,4,6,...) then $(-1)^n=1$ and if n is **odd** (n=1,3,5,7,...) then $(-1)^n=-1$.

Example 2.
$$(-2)^3 = (-2) \cdot (-2) \cdot (-2) = -8$$

 $(-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2) = 16$

In general,
$$(-x)^n = \underbrace{(-x) \cdot (-x) \dots (-x)}_{\substack{n \text{ times}}} = \underbrace{(-1)x \cdot (-1)x \dots (-1)x}_{\substack{n \text{ times}}}$$

$$= \underbrace{(-1) \cdot (-1) \dots (-1)}_{\substack{n \text{ times}}} \cdot \underbrace{x \cdot x \dots x}_{\substack{n \text{ times}}} = (-1)^n x^n.$$

Recall: if n is **even**, then $(-1)^n=1$, and if n is **odd**, then $(-1)^n=-1$. Therefore, $(-x)^n=x^n$ if n is **even**, and $(-x)^n=-x^n$ if n is **odd**.

Warning: $(-x)^n \neq -x^n$ when n is even.

4 / 8

Zero and negative exponents

What is 2^0 , or 2^{-1} , 2^{-2} , 2^{-3} , ...?

To answer this question, let us have a look at the process of consecutive multiplication by 2:

$$\cdots \xrightarrow{\times 2} \frac{1}{8} \xrightarrow{\times 2} \frac{1}{4} \xrightarrow{\times 2} \frac{1}{2} \xrightarrow{\times 2} 1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \xrightarrow{\times 2} 16 \xrightarrow{\times 2} \cdots$$

We understand this as an infinite sequence of **powers** of 2:

$$\cdots \xrightarrow{\times 2} \underbrace{2^{-3}}_{\frac{1}{8}} \xrightarrow{\times 2} \underbrace{2^{-2}}_{\frac{1}{4}} \xrightarrow{\times 2} \underbrace{2^{-1}}_{\frac{1}{2}} \xrightarrow{\times 2} \underbrace{2^{0}}_{1} \xrightarrow{\times 2} \underbrace{2^{1}}_{2} \xrightarrow{\times 2} \underbrace{2^{2}}_{4} \xrightarrow{\times 2} \underbrace{2^{3}}_{8} \xrightarrow{\times 2} \underbrace{2^{4}}_{16} \xrightarrow{\times 2} \cdots$$

We see that $2^0=1$, $2^{-1}=\frac{1}{2}=\frac{1}{2^1}$, $2^{-2}=\frac{1}{4}=\frac{1}{2^2}$, $2^{-3}=\frac{1}{8}=\frac{1}{2^3}$, and so on.

Zero and negative exponents

We define $x^0=1$ for any non-zero x and $x^{-n}=\frac{1}{x^n}$ for any non-zero x and any **positive integer** n .

Examples.
$$7^0=1$$
, $\left(\frac{2}{3}\right)^0=1$, $(-5)^0=1$, $(-1)^0=1$ $3^{-1}=\frac{1}{3^1}=\frac{1}{3}$, $3^{-2}=\frac{1}{3^2}=\frac{1}{9}$, $x^{-2}=\frac{1}{x^2}$.

Observe that the formula $x^{-n}=\frac{1}{x^n}$ means that x^n and x^{-n} are **reciprocals**. Therefore,

 $x^n = \frac{1}{x^{-n}}$. A power can be **moved** from numerator to denominator (or the other way around) with the **opposite** exponent.

Example.
$$\frac{3^{-1}}{2^{-4}} = \frac{2^4}{3^1} = \frac{16}{3}$$
.

6 / 8

Drill

Here are the exponential rules we have learned so far:

$$x^n = \underbrace{x \cdot x \cdot x \cdot \dots \cdot x \cdot x}_{n \text{ times}}$$

$$x^0 = 1$$

$$x^{-n} = \frac{1}{x^n}, \quad \frac{1}{x^{-n}} = x^n$$

Let us master these rules.

$$2^{3} = 2 \cdot 2 \cdot 2 = 8$$

$$(-2)^{3} = (-2) \cdot (-2) \cdot (-2) = -8$$

$$2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}, \quad \frac{1}{2^{-3}} = 2^{3} = 8$$

$$(-2)^{-3} = \frac{1}{(-2)^{3}} = \frac{1}{-8} = -\frac{1}{8}$$

$$2^{0} = 1, \quad (-2)^{0} = 1$$

7 / 8

Summary

In this lecture, we have learned about

- powers with **positive** exponents: $x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}}$ powers with **negative** exponents: $x^{-n} = \frac{1}{x^n}$
- reciprocals of powers with negative exponent: $\frac{1}{x^{-n}} = x^n$

8 / 8