Lecture 4

Addition and Multiplication

Properties of operations
Commutativity of addition
Commutativity of multiplication
Associativity of addition
Associativity of multiplication
When can we leave out parentheses?
Special numbers: 0 and 1
Reciprocals
Summary $\ldots\ldots$

Properties of operations

Addition and multiplication are basic arithmetic operations.

They share two useful properties.

These properties are

- commutativity
- associativity

In this lecture, we will study these properties

and learn how to make use of them.

2 / 10

Commutativity of addition

When adding two numbers, the order of the numbers doesn't matter.

For example, 2 + 3 = 3 + 2.

This property of addition can be written using variables:

$$\left(\begin{array}{cc} a+b=b+a & \text{ for any } a \text{ and } b \end{array}\right)$$

Since a and b can represent **any** numbers, this formula represents infinitely many equalities.

For example, if a=8 and b=5, then a+b=b+a becomes

$$8 + 5 = 5 + 8$$
.

If a=x and b=5, then a+b=b+a becomes $x+5=5+x\,.$

This property of addition is called **commutativity**.

Commutativity of multiplication

Multiplication is also commutative.

When multiplying two numbers, the order of the numbers doesn't matter.

For example,
$$2 \cdot 3 = 3 \cdot 2$$
.

This property is expressed using variables as follows:

$$a \cdot b = b \cdot a$$
 for any a and b

Since a and b represent **any** numbers, this formula represents infinitely many equalities.

For example, if
$$a=4$$
 and $b=7$, then $a\cdot b=b\cdot a$ becomes
$$4\cdot 7=7\cdot 4\,,$$

if
$$a=2$$
 and $b=x$, then $a\cdot b=b\cdot a$ becomes
$$2\cdot x=x\cdot 2\,.$$

4 / 10

Associativity of addition

When we add three numbers, the result does not depend on the order of operations:

$$(1+2)+3=3+3=6$$

 $1+(2+3)=1+5=6$.

That is, (1+2)+3=1+(2+3).

In general,

$$(a+b)+c=a+(b+c)$$
 for any a , b and c

This property of addition is called associativity.

Associativity helps to make calculations easier. Compare:

$$428+13999+1=(428+13999)+1=14427+1=14428 \ \, \text{and}$$

$$428+13999+1=428+(13999+1)=428+14000=14428\,.$$

Associativity of multiplication

Multiplication is also associative:

$$\int \; (ab)c = a(bc) \;$$
 for any $\; a$, $\; b \;$ and $\; c \;$

Associativity of multiplication is useful:

$$53 \cdot 25 \cdot 4 = 53 \cdot (25 \cdot 4) = 53 \cdot 100 = 5300.$$

In the next examples, both associativity and commutativity are used:

$$5 \cdot 97 \cdot 20 = (5 \cdot 97) \cdot 20 = (97 \cdot 5) \cdot 20 = 97 \cdot (5 \cdot 20) = 97 \cdot 100 = 9700,$$

$$2x \cdot 3y = 2(x \cdot 3)y = 2(3x)y = (2 \cdot 3)xy = 6xy.$$

6 / 10

When can we leave out parentheses?

Due to associativity,

when we perform either additions only, or multiplications only, the result does **not** depend on the order of operations:

$$((1+2)+3)+4=(1+(2+3))+4=1+((2+3)+4)$$
$$((2\cdot3)\cdot4)\cdot5=(2\cdot(3\cdot4))\cdot5=2\cdot((3\cdot4)\cdot5).$$

Therefore, we do **not** use parentheses in a formula

which involves additions only or multiplications only, like this

$$1+2+3+4$$
, $2 \cdot 3 \cdot 4 \cdot 5$

Moreover, due to commutativity, the order of numbers doesn't matter:

$$1+2+3+4=2+3+4+1=4+2+1+3=\dots$$

 $2\cdot 3\cdot 4\cdot 5=2\cdot 3\cdot 5\cdot 4=4\cdot 2\cdot 5\cdot 3=\dots$

Recall that if **both** addition and multiplication are present,

then the order **does** matter: $(1+2) \cdot 3 \neq 1+2 \cdot 3$

Special numbers: 0 and 1

$$a+0=a$$
 for any a

Numbers a and -a are called **opposite** to each other.

For example, -2 is opposite to 2, and 2 is opposite to -2.

$$a + (-a) = 0$$
 for any a

The product of any number by 0 equals 0:

$$a \cdot 0 = 0$$
 for any a

The product of any number by 1 equals this number:

$$a \cdot 1 = a$$
 for any a

8 / 10

Reciprocals

Numbers a and b are called **reciprocals** if $a \cdot b = 1$.

For example, 2 and $\frac{1}{2}$ are reciprocals, since $2 \cdot \frac{1}{2} = 1$.

Numbers a and $\frac{1}{a}$ are reciprocals for any non-zero a.

$$a \cdot \frac{1}{a} = 1$$
 for any non-zero a

0 has **no** reciprocal, because there is **no** number b such that $0 \cdot b = 1$.

Indeed, $0 \cdot b = 0$ for any b.

Summary

In this lecture, we have learned

- when parentheses are not needed
- identities involving 0 and 1: $a+0=a, a\cdot 1=a, a\cdot 0=0$
- opposite numbers
- reciprocal numbers