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A conversation that happens somewhere every five minutes
I Alice: I learned a cool identity: 1 + 2 + 3 + . . . = −1/12.

I Bob: That’s wrong. How does that make any sense?
I Alice: The Riemann zeta function ζ(s) = 1−s + 2−s + 3−s + . . . makes sense

for Re(s) > 1. Analytic continuation gives ζ(−1) = 1 + 2 + 3 + . . . = −1/12.
I Bob: That is so wrong.
I Alice: Also 1 ∗ 2 ∗ 3 ∗ . . . =

√
2π.

I Bob: Seriously wrong.
I Alice: ζ ′(s) =− log(1)1−s −log(2)2−s − . . . so −ζ ′(0) = log(1) + log(2) + . . .

We know −ζ ′(0) = log(
√

2π). So 1 ∗ 2 ∗ . . . = e−ζ
′(0) =

√
2π.

I Alice: Generally if λj grows linearly, write Z (s) :=
∑
λ−sj . Then

Z ′(s) =
∑− log(λj)λ

−s
j and Z ′(0) = −∑ log(λj). So

∏
λj = e−Z

′(0).
That’s obvious for fnite products. So if we define Z (s) for Re(s) > 1 and
analytically continue, then it also works in the infinite limit.

I Bob: That’s not how limits work. Converges on Re(s) > 1 6= converges at 0.
I Alice: Not in the conventional sense. But it is useful, for example in string

theory, to interpret these identities as being true in an alternative sense.
I Bob: Look Alice, we can have a civil conversation about zeta functions, but

your “cool identities” are just wrong. Maybe string theorists can get away
with this nonsense, but if you keep saying stuff like 1 + 2 + 3 + . . . = −1/12
you will lose all your friends. You will spend your life sad and alone.
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I Eve: Pardon me, but I couldn’t help overhearing your discussion.

I Eve: Ramanujan described a similar discussion in a letter to Hardy.
Dear Sir, I am very much gratified on perusing your letter of the 8th February
1913. I was expecting a reply from you similar to the one which a
Mathematics Professor at London wrote asking me to study carefully
Bromwich’s Infinite Series and not fall into the pitfalls of divergent series. I
told him that the sum of an infinite number of terms of the series:
1 + 2 + 3 + 4 + . . . = −1/12 under my theory. If I tell you this you will at once
point out to me the lunatic asylum as my goal.

I think you need somebody to explain some of the probability behind all this.
I Alice: I think we need a new cryptoprotocol. Bob: Yes.
I Eve: A Laplace Beltrami operator on a compact Riemannian surface (on

functions mod additive constant) has eigenvalues λ1 < λ2 < λ3 . . . growing
linearly. Naively it has trace

∑
λj =∞ and determinant

∏
λi =∞.

I Eve: But as Alice said, an alternative (first introduced by Ray and Singer in
1973) is det′∆ = e−Z

′(0) where Z (s) =
∑
λ−sj analytically continued.

I Eve: To justify it, let’s try to relate det ∆ to loop soups, GFFs, heat kernels,
random surfaces — the things Laplacian determinants were made for.

I Eve: Story involves Riemann, Ramanujan, Ray, McKean, Singer, Polyakov,
Alvarez, Sarnak, Singer, Dubédat, Kenyon, Zamolodchikov, Knizhnik, David,
Distler, Kawai, Duplantier, Hoegh-Krohn, Kahane, Schaeffer, Marckert, Cori,
Mokkadem, Le Gall, Vaquelin, Chassaing, Marckert, Mokkadem, Paulin....
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1 + 2 + 3 + 4 + . . . = −1/12 under my theory. If I tell you this you will at once
point out to me the lunatic asylum as my goal.

I think you need somebody to explain some of the probability behind all this.
I Alice: I think we need a new cryptoprotocol. Bob: Yes.
I Eve: A Laplace Beltrami operator on a compact Riemannian surface (on

functions mod additive constant) has eigenvalues λ1 < λ2 < λ3 . . . growing
linearly. Naively it has trace

∑
λj =∞ and determinant

∏
λi =∞.

I Eve: But as Alice said, an alternative (first introduced by Ray and Singer in
1973) is det′∆ = e−Z

′(0) where Z (s) =
∑
λ−sj analytically continued.

I Eve: To justify it, let’s try to relate det ∆ to loop soups, GFFs, heat kernels,
random surfaces — the things Laplacian determinants were made for.

I Eve: Story involves Riemann, Ramanujan, Ray, McKean, Singer, Polyakov,
Alvarez, Sarnak, Singer, Dubédat, Kenyon, Zamolodchikov, Knizhnik, David,
Distler, Kawai, Duplantier, Hoegh-Krohn, Kahane, Schaeffer, Marckert, Cori,
Mokkadem, Le Gall, Vaquelin, Chassaing, Marckert, Mokkadem, Paulin....
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First, remember planar maps

Start out with a sheet of paper



First, remember planar maps

P
E
N

Get out pen and ruler



First, remember planar maps

P
E
N

Measure and mark squares squares of equal size



First, remember planar maps

Get out scissors



First, remember planar maps

Cut into squares



First, remember planar maps

GLUE

Get out bottle of glue



First, remember planar maps

GLUE

Attach squares along boundaries with glue to form a surface “without holes.”



What is the structure of a typical quadrangulation when the number of faces is large?
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)



More on random planar maps

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working
on the four color theorem.

2. Variants: triangulations, quadrangulations, etc.

3. Can be interpreted as Riemannian manifolds
with conical singularities.

4. Converges in law in Gromov-Hausdorff sense to
random metric space called Brownian map,
homeomorphic to the 2-sphere, Hausdorff
dimension 4 (established in several works by
subsets of Chaissang, Schaefer, Le Gall, Paulin,
Miermont). Higher genus work announced by
Miermont and Bettinelli.

5. String theory program: Polyakov, etc., map
decorated by function from vertices to Rd ,
representing map embedded in Rd . Can also
decorate by distinguished spanning tree, edge
subset, “spin” function, etc.

6. Brownian surface program: Understand
d = 0 case very well, build entire theory using
Brownian snakes in place of GFF.
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“How many ways” are there to embed a given map in Rd?
I Easy Gaussian integral:

∫
(2π)−1/2e−7x2/2 = 7−1/2. Can write 7 = 1/σ2.

I In dimension d ,
∫

(2π)−d/2e−(x,Ax)/2 = | detA|−1/2, which we refer to as
partition function. Note that | detA|1/2 is height of normal density function
at origin. Probability Gaussian is in εd box is (up to 2π factors) about
εd | detA|1/2.

I Laplacian of finite connected graph (V ,E ) is linear operator ∆ from RV to
itself. Its matrix is given by

Mi,j =


1 i 6= j , (vi , vj) ∈ E

0 i 6= j , (vi , vj) 6∈ E

−deg(vi ) i = j .

.

I Let R ⊂ RV be the set of functions with mean zero. Then ∆ : R → R is
invertible, and Kirchhoff’s matrix tree theorem states that det ∆ is (|V |
times) the number of spanning trees of (V ,E ).

I det ∆ is also the product of the (non-zero) eigenvalues of ∆. Sometimes
write det′∆ to stress on is excluding zero mode.

I The DGFF partition function (“number of ways to embed”) can be written as
(power of 2π times)

∫
e−(f ,∆f )/2df = (det ∆)−1/2.
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Think about det ∆ and decorated maps

I det ∆ (the number of spanning trees) is minimized if map is itself a tree. If we
fix number of edges, then intuitively, the less tree-like M is, the larger det ∆.

I Tree-weighted maps: If instead of choosing a uniform planar map M, we
choose a tree-decorated map (M,T ) then the marginal law of M gives each
M a probability proportional to det ∆. So M tends to be “less tree like” than
in the unweighted case.

I GFF-weighted maps: Choosing map decorated by d instances of the GFF
(interpreted as a map embedded in Rd) corresponds to weighting by
(det ∆)−d/2. The higher the value of d , the more “tree-like” M should
typically be.
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Think about loop soup decorated maps
I If we fix a boundary vertex then for an appropriately defined loop measure µ

(and p number of vertices hit) we have

µ(p > 1) = −1

2
log(det ∆)

.

I Requiring p > 1 effectively truncates small loops. Since paths are killed when
they hit the boundary vertex, long loops are exponentially rare. (See Lupu,
Dynkin, Le Jan, Lawler, Werner...)

I Loop soup weighted maps of intensity c: Random loop-decorated map.
Given map, the loops are Poisson point process; total number Poisson with
parameter cµ(p > 1). Given that there are k loops, map probabilities are
proportional to (cµ(p > 1))k . Overall probability of a map is proportional to
its “intensity c loop soup partition function” which is ecµ(p>1) = (det ∆)−c/2

I Can increase c (make M more tree-like) or decrease c (make M less tree-like).
I Belief: If c ≤ 1 then weighting by (det ∆)−c/2 makes the scaling limit a

Liouville quantum gravity surface with parameter γ whose value is fixed by
Q = 2/γ + γ/2 where c = 25− 6Q2.

I Note: As c increases from −∞ to 1 the value γ increases from 0 to 2.
I When c > 1, naive construction seems to give embedded continuum random

tree as scaling limit. But as often happens in life, there is an alternative...
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I If we fix a boundary vertex then for an appropriately defined loop measure µ

(and p number of vertices hit) we have

µ(p > 1) = −1

2
log(det ∆)

.I Requiring p > 1 effectively truncates small loops. Since paths are killed when
they hit the boundary vertex, long loops are exponentially rare. (See Lupu,
Dynkin, Le Jan, Lawler, Werner...)
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Two measures of (sphere-embedded) planar map “size”

log2 (# spanning trees)

# edges



Other statistical physics models

I Adding other critical statistical physics structure thought to be morally like
adding loop soups of some intensity c . Either way, scaling limit should be
LQG surface with parameter γ fixed by Q = 2/γ + γ/2 and c = 25− 6Q2.

I Ising model: c = 1/2

I FK random cluster model: c ∈ [−2, 1]

I Bipolar orientations: c = −7 (Kenyon, Miller, S. ,Wilson)

I Schnyder Woods: c = −25/2 (Li, Sun, Watson)

I And, again, spanning tree: c = −2

I Discrete GFF (or some similar discrete height function): c = 1

I Intensity c loop soup: c
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The conversation
I Alice: You are taking longer to get the point than I anticipated.

I Bob: Yes, I mean I think we already believed that loop soups, Laplacian
determinants, and GFFs were related on discrete maps.

I Alice: We know uniform random planar maps scale to Brownian surfaces.
I Bob: And loop-soup-decorated maps should scale to “LQG surfaces” that are

“rougher or smoother” (i.e., more or less tree-like) than the Brownian map as
c is respectively positive or negative. Big c means super rough. c close to
−∞ means smoother (but still fractal).

I Alice: The exact Hausdorff dimension as a function of c is a big open
problem, but it should increase from 2 to 4.8 or so as c increases from −∞
to 1. But there’s some truly amazing new work about the metric structure of
these LQG surfaces (Gwynne, Miller, Ding, Dubédat, Falconet, Pfeffer, Sun,
Ang, Remy, others I’m forgetting)

I Eve: Right.
I Alice: But you haven’t mentioned continuum loop soups or zeta functions.
I Eve: That’s coming.
I Bob: Can you just show us a theorem?
I Alice: Or maybe first some more pictures and then a theorem?
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Pre-theorem definitions

I For a Riemannian manifold (M, g) (possibly with boundary) and a curve η on
it, define its duration ν(η) to be half its quadratic variation.

I Suppose that g0 is a metric and g = e2σg0 for some smooth σ : M → R, and
let ν0, ν be their respective duration functions. If η : [0,T ]→ R is
parametrized by ν0, then we have

ν(η) =

∫ T

0

e2σ(ηt) dt.

I Recall Brownian loop measure, introduced by Lawler and Werner for planar
domains. Definition extends easily to the general setting of a Riemannian
manifold (M, g), possibly with boundary, and in this case we write µloop

M,g for
the Brownian loop measure.

I On any 2-dimensional Riemannian manifold (M, g), the loop measure µloop
M,g is

infinite because of the many loops of short duration, so when we study the
loop mass we need to perform a regularization procedure to handle the
infinitude of small loops. We will sometimes truncate loops shorter than a
constant δ.
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A theorem about surfaces with boundary

I THEOREM (Ang, Park, Pfeffer, S.): Let (M, g) be a compact orientable
dimension 2 Riemannian manifold with boundary. Then for small δ > 0 we
have µloop

M,g (L(M, g , δ)) is equal to

Volg (M)

2πδ
− Leng (∂M)√

8πδ
−log det ∆g−

χ(M)

6
log δ+(γ+log 2)

χ(M)

6
+O(δ1/2),

where γ is the Euler-Mascheroni constant and χ(M) is the Euler
characteristic.



Theorem for compact surfaces without boundary
I THEOREM (Ang, Park, Pfeffer, S.): Let (M, g) be a compact orientable

surface. Then for δ > 0 small and C > 0 large we have, with γ the
Euler-Mascheroni constant,

µloop
M,g (L(M, g , δ)\L(M, g ,C )) =

Volg (M)

2πδ
− χ(M)

6
log δ + logC − log det′∆g + (γ + log 2)

(
χ(M)

6
− 1

)
+ O(δ1/2) + O(e−αC ),

where α > 0 depends on the manifold (M, g).

I COROLLARY: Let (S2, g) be a sphere and η a simple smooth closed curve
on the sphere. Then the mass of loops hitting γ of size between δ and C is
given by

Leng (η)√
2πδ

+ logC − logVolg (S2)− 1

12
IL(η)

−H(S1, g)− γ − log 2 + O(δ1/2) + O(e−αC ),

where IL(η) is the Loewner energy of the curve η, and γ is the
Euler-Mascheroni constant.

I Take loop mass on sphere, subtract loop mass in each half of S2\η applying
Yilin-Wang (the quantity H(S1, g) there is a nonexplicit constant).
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Euler-Mascheroni constant.

I Take loop mass on sphere, subtract loop mass in each half of S2\η applying
Yilin-Wang (the quantity H(S1, g) there is a nonexplicit constant).



Polyakov-Alvarez

I For the case of a simply connected domain D ⊂ C with smooth boundary, we
can rewrite the above result using the Polyakov-Alvarez conformal anomaly
formula. Let σ be a smooth function on D with derivatives extending
continuously to ∂D. Then, with respect to the Brownian loop measure on D,
the mass of loops having duration at least δ with respect to the metric
g = e2σ(dx2 + dy2) is given by

µloop
D (L(D, g , δ)) =

Volg (D)

2πδ
− Leng (∂D)√

8πδ
− 1

6
log δ +

1

12π

∫∫
D

|∇σ(z)|2 dz

+
1

4π

∫
∂D

σn(w) dw +
1

6π

∫
∂D

k0σ(w) dw + c̃ + o(1),

where we write σn to denote the derivative of σ in the outward normal
direction along ∂D, and k0 for the geodesic curvature on ∂D with respect to
the Euclidean metric dx2 + dy2. Here, c̃ is constant not depending on σ.



Exponentially discount long loops (has discrete analog)

I For κ > 0, define the loop measure with κ-decay µloop
M,g ,κ to be the loop

measure such that for any Brownian loop η, we have the Radon-Nikodym
derivative

dµloop
M,g ,κ

dµloop
M,g

(η) = e−κν(η).

I THEOREM: Let (M, g) be a closed orientable dimension 2 Riemannian

manifold. For κ > 0, we have µloop
M,g ,2κ(L(M, g , δ)) =

Volg (M)

2πδ
−χ(M)

6
log δ−log κ−log det′∆g+(γ+log 2)

χ(M)

6
+lower order terms.
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Defining Brownian loop measure

I The rooted Brownian loop measure on (M, g), denoted µrooted
M,g , is a measure

on rooted loops, i.e., paths γ : [0, L]→ M with γ(0) = γ(L), given by

µrooted
M,g :=

∫
M

1

νM,g (γ)
µz,z
M,gVolg (dz).

Recall that νM,g (γ) is the duration of the loop γ, which equals L for almost
every γ in the support of µM,g .

I LEMMA: If g , g ′ are conformally equivalent metrics on a manifold M, then
the measures µrooted

M,g and µrooted
M,g ′ induce the same measure on unrooted loops;

i.e., on equivalence classes of rooted loops γ : [0, L]→ M under the
equivalence relation identifying γ with

θrγ(s) :=

{
γ(s + r), if s ≤ L− r

γ(s + r − L), if s > L− r
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zeta regularized determinant and Brownian loop mass
I For s ∈ C with <s > 1, define the Selberg zeta function

ζ(s) =
∑
λj 6=0

λ−sj .

I By Weyl’s formula we know that λn � n, so the condition that <s > 1
guarantees convergence and furthermore

ζ ′(s) = −
∑
λj 6=0

λ−sj log λj .

I One can show that ζ can be meromorphically continued to the complex
plane, and is holomorphic at s = 0. One can formally interpret ζ ′(0) as
−∑λj 6=0 log λj , motivating the definition of the zeta regularized determinant

det′∆ (Ray, Singer).
log det′∆ := −ζ ′(0).

I We write det′ to indicate the removal of the zero eigenvalue. For the
Laplace-Beltrami operator on a two dimensional compact orientable manifold
with smooth boundary, we can similarly define its zeta regularized
determinant det ∆ (no zero eigenvalue is removed).
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zeta regularized determinant and Brownian loop mass

I (M, g) is an orientable two dimensional Riemannian manifold which is either
closed or compact with boundary; let 0 < λ1 ≤ λ2 ≤ . . . be its nonzero
eigenvalues, and let N ≥ 0 be the multiplicity of the zero eigenvalue.

I The following is valid for <(s) > 1 since tr(e−t∆)− N decays exponentially
in t (this follows from the presence of the boundary):

ζ(s) =
∑
j>0

λ−sj =
∑
j>0

1

Γ(s)

∫ ∞
0

ts−1e−tλj dt =
1

Γ(s)

∫ ∞
0

ts−1(tr(e−t∆)−N) dt.

I In other words, ζ(s) is 1
Γ(s) -times the Mellin transform of tr(e−t∆). Notice

that the above integral does not makes sense when <(s) ≤ 1 since it blows
up near t = 0. Nevertheless, if we understand the behavior of tr(e−t∆) near
0 and ∞, we can try to to meromorphically extend the above function to the
whole complex plane.

I We can interpret η(s) as measure of loops where loops are weighted by
length to s power. If s is large, this penalizes small loops enough to make
measure finite.
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Loop mass computations: proof overview

I McKean and Singer (1967): short time expansion of heat kernel trace:

tr(e−t∆) =
Volg (M)

4πt
− Leng (∂M)

8
√
πt

+
χ(M)

6
+ O(t1/2) as t → 0+.

I Using this estimate, we have for <(s) > 1 that

ζ(s) =
1

Γ(s)

∫ ∞
δ/2

ts−1 tr(e−t∆)dt

+
1

Γ(s)

∫ δ/2

0

ts−1

(
tr(e−t∆)− Volg (M)

4πt
+

Leng (∂M)

8
√
πt

− χ(M)

6

)
dt

+
1

Γ(s)

(
Volg (M)

4π(s − 1)

(
δ

2

)s−1

− Leng (∂M)

8
√
π(s − 1

2 )

(
δ

2

)s− 1
2

)
+

1

Γ(s + 1)

(
δ

2

)s
χ(M)

6
.

I Here we have used the identity sΓ(s) = Γ(s + 1). In the above form, it is
clear that ζ(s) extends holomorphically to a neighborhood of s = 0.
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Loop mass computations: proof overview

I Differentiate in s at s = 0. Since lims→0 sΓ(s) = 1 and d
ds

∣∣
s=0

1
Γ(s+1) = −γ,

we have ζ ′(0) =∫ ∞
δ/2

t−1 tr(e−tδ) dt +

∫ δ/2

0

O(t−1/2)dt −
(
δ

2

)−1
Volg (M)

4π

+ 2

(
δ

2

)−1/2
Leng (∂M)

8
√
π

+ (log δ − log 2)
χ(M)

6
− γ χ(M)

6
.

I Using the fact that ζ ′(0) = − log det ∆M,g and∫∞
δ/2

t−1 tr(e−t∆)dt =
∫∞
δ

u−1 tr(e−u∆/2)du = µloop
M,g (L(M, g , δ)) (since the

generator of Brownian motion is 1
2 ∆), we are done.
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Loop mass computations

I The Polyakov-Alvarez conformal anomaly formula describes how the
determinant of the Laplacian changes when one perturbs the conformal factor
of the metric.

I Proposition: Let D ⊂ C be a simply connected domain, and consider two
conformally equivalent metrics g , g0 on it with g = e2σg0 for some smooth
function σ. Then writing K0 and k0 for the Gauss and geodesic curvatures
with respect to g0, we have

log det ∆g = − 1

12π

∫
D

|∇g0σ|2 dVolg0 +
1

6π

∫
D

K0σ dVolg0

+
1

6π

∫
∂D

k0σ dLeng0 −
1

4π

∫
∂D

∂nσ dLeng0 + log det ∆g0 .

I Similar statement for Polyakov-Alvarez without boundary.
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Liouville quantum gravity

I Liouville quantum gravity: eγh(z)dz
where h is a GFF and γ ∈ [0, 2)

I Random surface model: Polyakov,
1980. Motivated by string theory.

I Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2).

Kahane, 1985, γ ∈ [0, 2).

I Does not make literal sense since h
takes values in the space of
distributions.

I Can make sense of random area
measure using a regularization
procedure.

I Areas of regions and lengths of curves
are well defined.

γ = 0.5

(Number of subdivisions)
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Smoothed planar maps

I One can do square subdivions but observe mean of GFF on each box before
deciding whether to divide it.

I Then given what one has learned after subdividing, the conditional law has a
particular form.

I Weighting by Dirichlet energy changes variance with same stopping time rule,
corresponds precisely to changing c in the way that we expect.

I Allows us to construct some credible approximations to LQG for which the
loop soup weighting (in small cutoff limit) exactly corresponds to changing c
in the way we expect.

I Unlike ordinary loop-soup-weighted planar maps, the “smoothed planar
maps” are equally well understood for each c .
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Mixing different κ values and/or mismatched γ

I Start with a quantum wedge or another random surface, possibly decorated
by curves.

I One can weight loop soup measure, but one has choice of whether to
counting loops hitting curves or not hitting curves.

I This suggests a whole zoo of variants of the quantum zipper, involving loops
and a wild mixture of κ values and γ values.
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Note

I We considered three quantities associated to a compact manifold

1. A certain term in the truncated loop soup measure expansion
2. The zeta function Laplacian determinant
3. The Dirichlet energy of h

I We can then say that

A. McKean/Singer/Osgood/Philipps/Sarnak plus work connects 1 and 2.
B. Polyakov-Alvarez connects 2 and 3.
C. Another approach connects 1 and 3 directly.
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Happy birthday Chris!
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