On the Duffin-Schaeffer conjecture

Dimitris Koukoulopoulos¹

joint work with James Maynard²

¹Université de Montréal ²University of Oxford

Stony Brook University October 3, 2019

Diophantine approximation

Given an irrational number α , we seek rational approximations

$$\frac{a}{q} \approx \alpha$$

Two things to look for:

- the **complexity** of the approximation, i.e. how big q is
- the **quality** of the approximation, i.e. how close a/q is to α

Optimal balance of complexity vs. quality?

i.e. for which choices of $(\Delta_q)_{q=1}^\infty$ do we have $\infty\text{-many solutions to}$

$$\left| \alpha - \frac{a}{q} \right| \leqslant \Delta_q$$
 ?

Continued fractions

We have

Let $\alpha \in [0, 1] \setminus \mathbb{Q}$ and define:

$$n_{1} = \lfloor 1/\alpha \rfloor \quad \rightsquigarrow \quad \alpha = \frac{1}{n_{1} + \alpha_{1}}, \quad 0 < \alpha_{1} < 1$$

$$n_{2} = \lfloor 1/\alpha_{1} \rfloor \quad \rightsquigarrow \quad \alpha = \frac{1}{n_{1} + \frac{1}{n_{2} + \alpha_{2}}}, \quad 0 < \alpha_{2} < 1$$

$$\alpha \approx \frac{a_{j}}{q_{j}} := \frac{1}{n_{1} + \frac{1}{n_{2} + \frac{1}{\dots + \frac{1}{n_{j}}}} = j\text{-th convergent}$$
the recurrence formula
$$\begin{cases} a_{j} = n_{j}a_{j-1} + a_{j-2} \\ q_{j} = n_{j}q_{j-1} + q_{j-2} \end{cases}$$

CF as best approximations

$$\left|\alpha - \frac{a_j}{q_j}\right| = \min\left\{\left|\alpha - \frac{a}{q}\right| : 1 \leqslant q \leqslant q_j\right\}$$
$$\frac{1}{2q_jq_{j+1}} \leqslant \left|\alpha - \frac{a_j}{q_j}\right| \leqslant \frac{1}{q_jq_{j+1}} < \frac{1}{q_j^2}$$

$$\left| lpha - rac{a}{q}
ight| < rac{1}{2q^2} \quad \& \quad (a,q) = 1 \qquad \Longrightarrow \qquad rac{a}{q} \in \left\{ rac{a_1}{q_1}, rac{a_2}{q_2}, \dots
ight\}$$

Metric diophantine approximation

 $\lambda = \text{Lebesgue measure}$

Question: What is the **typical** quality of approximation of α by its convergents (i.e. what happens λ -almost everywhere)?

- Example: it is known that the sequence $n_1, n_2, ...$ is typically unbounded.
- Given errors $(\Delta_q)_{q=1}^{\infty}$, let

 $\mathcal{K} := \{ \alpha \in [0, 1] : |\alpha - a/q| \leqslant \Delta_q \text{ for } \infty \text{-many } a, q \}$

Khinchin (1924) proved that if $q^2 \Delta_q \searrow$, then:

$$\sum_{q} q \Delta_{q} < \infty \implies \lambda(\mathcal{K}) = 0$$

 $\sum_{q} q \Delta_{q} = \infty \implies \lambda(\mathcal{K}) = 1$

Corollary: for a typical α , we have $|\alpha - a/q| \le 1/(q^2 \log q) \infty$ -often (and a/q must be a convergent as soon as $q \ge 10$)

Why is Khinchin correct?

$$\mathcal{K}_{q} := \bigcup_{0 \leqslant a \leqslant q} \left[\frac{a}{q} - \Delta_{q}, \frac{a}{q} + \Delta_{q} \right]$$
$$N(\alpha) = \#\{q : \alpha \in \mathcal{K}_{q}\}$$
$$\mathbb{E}_{\alpha \in [0,1]}[N(\alpha)] = \sum_{q} \lambda(\mathcal{K}_{q}) = 2\sum_{q} q\Delta_{q}$$
$$\mathcal{K} := \limsup_{q \to \infty} \mathcal{K}_{q} = \{\alpha \in [0,1] : \alpha \in \mathcal{K}_{q} \text{ for } \infty\text{-many } q\}$$

• 'easy' direction of Borel-Cantelli : $\sum_{q\in\mathcal{S}}q\Delta_q<\infty \quad \Rightarrow \quad \lambda(\mathcal{K})=0.$

 \bullet Khinchin's theorem establishes the 'hard' direction of Borel-Cantelli when $q^2 \Delta_q \searrow$

Note: must show the sets \mathcal{K}_q are sufficiently quasi-independent.

The Duffin-Schaeffer conjecture

Question: What is the most general Khinchin-type result?

i.e. for which sequences $(\Delta_q)_{q=1}^\infty$ are there ∞ -many solutions to

$$\left| \alpha - \frac{a}{q} \right| \leqslant \Delta_q$$
 ?

- If Δ_qq² ↘, then Δ_q = O(1/q²).
 What about larger Δ_q? (We are moving away from the theory of continued fractions.)
- If Δ_qq² ↘, then either Δ_q > 0 for all q, or Δ_q = 0 for all large enough q.
 What about sequences supported on sparser sets² on using

What about sequences supported on sparser sets? e.g. using denominators that are primes, powers of 10, or perfect squares?

→ must focus on **reduced** fractions (avoids overcounting; deals with non-multiplicative structure of support of Δ_q)

The Duffin-Schaeffer conjecture

$$\mathcal{A}_q := igcup_{\substack{1\leqslant a\leqslant q \ \gcd(a,q)=1}} \Big[rac{a}{q} - \Delta_q, rac{a}{q} + \Delta_q\Big], \qquad \mathcal{A} = \limsup_{q o\infty} \mathcal{A}_q$$

• Here $\lambda(\mathcal{A}_q) = 2\varphi(q)\Delta_q$, where

$$arphi(q) = \#(\mathbb{Z}/q\mathbb{Z})^* = q \prod_{
ho|q} (1-1/
ho) =$$
 Euler's totient function

• Hence, the 'easy' Borel-Cantelli lemma yields:

$$\sum_{q} arphi(q) \Delta_q < \infty \qquad \Rightarrow \qquad \lambda(\mathcal{A}) = 0$$

• Duffin and Schaeffer (1941) conjecture a strong converse is also true:

$$\sum_{q} \varphi(q) \Delta_{q} = \infty \qquad \Rightarrow \qquad \lambda(\mathcal{A}) = 1.$$

• Gallagher (1961) proved there is 0-1 law: $\lambda(A) \in \{0, 1\}$

A key difference

$$\mathcal{S} := \mathsf{supp}(\Delta_q) = \{q : \Delta_q > 0\}$$

S could be a very sparse/irregular set, which also forces Δ_q to be large (can no longer use continued fractions)

We can think of the Duffin-Schaeffer Conjecture (DSC) as follows: We are given:

- S a set of admissible denominators
- for each $q \in S$, an *admissible error* $0 < \Delta_q \leq \frac{1}{2q}$

$$\mathcal{A} := \left\{ lpha \in [0,1] : \left| lpha - rac{a}{q}
ight| \leqslant \Delta_q \quad ext{for ∞-many $q \in \mathcal{S}$, $gcd}(a,q) = 1
ight\}$$

Question: $\lambda(\mathcal{A}) = 0$ or $\lambda(\mathcal{A}) = 1$?

Previous results on DSC

- Duffin-Schaeffer (1941): DSC is true when φ(q) ≍ q on average when weighted with (Δ_q)_{q∈S} Example: S = {primes}
- Erdős (1970) & Vaaler (1978): DSC is true when $\Delta_q = O(1/q^2)$ (useful when S is relatively large so that $\sum_{q \in S} \varphi(q)/q^2 = \infty$)
- Pollington-Vaughan (1990): DSC is true in \mathbb{R}^d for d > 1
- Many results establishing DSC when there is 'extra divergence', i.e. when Σ_{q∈S} ^{φ(q)Δq}/_{Lq} = ∞;
 Aistleitner (2019): can take L_q = (log log q)^ε

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

Corollary (Catlin's conjecture)

$$\mathcal{K} := \{ \alpha \in [0, 1] : |\alpha - a/q| \leq \Delta_q \text{ for } \infty \text{-many } a, q \}$$

$$\mathcal{C} := \sum_{q} \varphi(q) \max\{\Delta_q, \Delta_{2q}, \dots\}$$

We then have $\lambda(\mathcal{K}) = 1$ when $C = \infty$, whereas $\lambda(\mathcal{K}) = 0$ when $C < \infty$.

Using a theorem of Beresnevich-Velani we also obtain:

Corollary

 $\mathcal{A} := \{ \alpha \in [0, 1] : |\alpha - a/q| \leq \Delta_q \text{ for inf. many coprime } a, q \}$ Assume $\sum_q \varphi(q) \Delta_q < \infty$, so that $\lambda(\mathcal{A}) = 0$. Then

$$\dim_{\mathit{Hausdorff}}(\mathcal{A}) = \min \left\{ eta \geqslant \mathsf{0} : \sum_{q} arphi(q) \Delta_{q}^{eta} < \infty
ight\}$$

Inverting Borel-Cantelli

$$\begin{array}{ll} \mathsf{Set-up}: & \mathcal{A}_q = \bigcup_{\substack{1 \leqslant a \leqslant q \\ \mathsf{gcd}(a,q) = 1}} \Big[\frac{a}{q} - \Delta_q, \frac{a}{q} + \Delta_q \Big], & \mathcal{A} = \limsup_{\substack{q \to \infty \\ q \in \mathcal{S}}} \mathcal{A}_q, \\ & \lambda(\mathcal{A}_q) = 2\varphi(q)\Delta_q, & \sum_{q \in \mathcal{S}} \lambda(\mathcal{A}_q) = \infty. \end{array}$$

Working heuristic: the sets A_q are quasi-independent events of the probability space [0, 1] and should thus have limited overlap if the sum of their measures is ≤ 1 .

$$\textbf{Goal}: \qquad \sum_{q \in [x,y] \cap \mathcal{S}} \lambda(\mathcal{A}_q) \approx 1 \quad \Longrightarrow \quad \lambda(\bigcup_{q \in [x,y] \cap \mathcal{S}} \mathcal{A}_q) \approx 1.$$

This is enough because it implies $\lambda(A) > 0$, and thus $\lambda(A) = 1$ by Gallagher's 0-1 law.

Cauchy-Schwarz

•
$$N(\alpha) = \#\{q \in [x, y] \cap S : \alpha \in A_q\} \quad \rightsquigarrow \quad \bigcup_{q \in [x, y] \cap S} A_q = \operatorname{supp}(N)$$

•
$$\int N(\alpha) d\alpha = \sum_{q \in [x,y] \cap S} \int 1_{\mathcal{A}_q}(\alpha) d\alpha = \sum_{q \in [x,y] \cap S} \lambda(\mathcal{A}_q)$$

•
$$\left(\int N(\alpha) d\alpha\right)^2 \leq \lambda \left(\operatorname{supp}(N)\right) \int N(\alpha)^2 d\alpha$$

 $\Leftrightarrow \sum_{q \in [x,y] \cap S} \lambda(\mathcal{A}_q) \leq \lambda \left(\bigcup_{q \in [x,y] \cap S} \mathcal{A}_q\right) \sum_{q,r \in [x,y] \cap S} \lambda(\mathcal{A}_q \cap \mathcal{A}_r).$

 $\begin{array}{lll} \text{Revised goal:} & \sum_{q \in [x,y] \cap \mathcal{S}} \lambda(\mathcal{A}_q) \approx 1 & \implies & \sum_{q,r \in [x,y] \cap \mathcal{S}} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \lesssim 1 \end{array}$

The Erdős-Vaaler argument

Assume $\Delta_q = 1/q^2$ for $q \in S$, and that y = 2x (to fix size of q) $\sum_{q \in [x,2x] \cap S} \lambda(\mathcal{A}_q) \approx 1 \qquad \Longleftrightarrow \qquad \sum_{q \in [x,2x] \cap S} \frac{\varphi(q)}{q} \approx x$

For simplicity: ignore the weights $\varphi(q)/q$ and think of S as an arbitrary set of $\asymp x$ integers in [x, 2x]

Pollington-Vaughan: for $q, r \in S$, we have

$$\frac{\lambda(\mathcal{A}_q \cap \mathcal{A}_r)}{\lambda(\mathcal{A}_q)\lambda(\mathcal{A}_r)} \geqslant \log t \qquad \Longrightarrow \qquad L_t(q,r) := \sum_{\substack{p \mid \frac{qr}{\gcd(q,r)^2} \\ p \geqslant t}} \frac{1}{p} \geqslant 1.$$

 $\sim \rightarrow$

$$\sum_{q,r\in[x,2x]\cap\mathcal{S}}\lambda(\mathcal{A}_q\cap\mathcal{A}_r)\lesssim\int_1^\infty\frac{\#\{q,r\in[x,2x]:L_t(q,r)\geqslant 1\}}{x^2}\cdot\frac{\mathrm{d}t}{t}$$

Anatomical statistics

$$\mathbb{E}_{q,r\in[x,2x]}\Big[L_t(q,r)\Big] \leqslant \mathbb{E}_{q,r\in[x,2x]}\Big[\sum_{\substack{p|q,p\geqslant t}}\frac{1}{p} + \sum_{\substack{p|r,p\geqslant t}}\frac{1}{p}\Big]$$
$$= 2\sum_{\substack{p\geqslant t}}\frac{1}{p} \cdot \mathbb{P}_{q\in[x,2x]}(p|q)$$
$$\approx 2\sum_{\substack{p\geqslant t}}\frac{1}{p^2} \lesssim \frac{2}{t\log t}$$

In fact, using Chernoff's inequality we find:

$$\frac{\#\{q, r \in [x, 2x] : L_t(q, r) \ge 1\}}{x^2} = O(e^{-t})$$

 $\sim \rightarrow$

$$\sum_{q,r\in[x,2x]\cap\mathcal{S}}\lambda(\mathcal{A}_q\cap\mathcal{A}_r)\lesssim\int_1^\infty O(e^{-t})\mathrm{d}t=O(1).$$

Generalizing Erdős-Vaaler Assume $\exists c \in (0, 1)$ such that $\Delta_q = 1/q^{1+c}$ for $q \in S$.

$$\sum_{q \in [x,2x] \cap S} \lambda(\mathcal{A}_q) \approx 1 \qquad \Longleftrightarrow \qquad \sum_{q \in [x,2x] \cap S} \frac{\varphi(q)}{q} \approx x^c$$

For simplicity: ignore the weights $\varphi(q)/q$ and think of S as an arbitrary set of x^c integers in [x, 2x]

Pollington-Vaughan: for $q, r \in S$, we have

$$\frac{\lambda(\mathcal{A}_q \cap \mathcal{A}_r)}{\lambda(\mathcal{A}_q)\lambda(\mathcal{A}_r)} \ge \log t \quad \Longrightarrow \quad \left\{ \begin{array}{cc} (\mathbf{1}) & L_t(q,r) \ge \mathbf{1} \\ (\mathbf{2}) & x^{1-c}/t \le \gcd(q,r) \le x^{1-c} \end{array} \right\}$$

(Think of *t* as large but much smaller than *x*.)

 \sim

$$\sum_{q,r\in[x,2x]\cap\mathcal{S}}\lambda(\mathcal{A}_q\cap\mathcal{A}_r)\lesssim \int_1^\infty \frac{\#\Big\{q,r\in\mathcal{S}: \begin{array}{c}L_t(q,r)\geqslant 1\\t^{-1}\leqslant \frac{\gcd(q,r)}{x^{1-c}}\leqslant 1\end{array}\Big\}}{x^{2c}}\cdot\frac{\mathrm{d}t}{t}$$

Two conditions

Goal: if $S \subset [x, 2x]$ is a set of x^c integers, show that

$$\#\Big\{q,r\in\mathcal{S}: \begin{array}{c} L_t(q,r) \geqslant 1\\ t^{-1} \leqslant \frac{\gcd(q,r)}{x^{1-c}} \leqslant 1 \end{array}\Big\} \leqslant \frac{x^{2c}}{t}.$$

- (1) The anatomical condition $L_t(q, r) \ge 1$ offers exponential gains in t when q, r are sampled over a *dense* subset of [x, 2x]
- (2) $x^{1-c} \ge \gcd(q, r) \ge x^{1-c}/t$ is a structural condition. The heart of the proof is understanding how often it occurs.

Analysis of the structural condition $gcd(q, r) \approx x^{1-c}$

$$\sum_{\substack{x \leqslant q \leqslant 2x \\ \gcd(q,r) \geqslant x^{1-c}/t}} 1 \leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \sum_{\substack{x \leqslant q \leqslant 2x \\ d \mid q}} 1$$
$$\leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \frac{x}{d}$$
$$\leqslant tx^{c} \cdot \#\{d|r\}$$

$$\rightsquigarrow \qquad \#\Big\{q, r \in \mathcal{S}: \begin{array}{l} L_t(q, r) \geqslant 1\\ \gcd(q, r) \geqslant \frac{x^{1-c}}{t} \end{array}\Big\} \lesssim tx^{2c+o(1)} = t^2 \cdot x^{o(1)} \cdot \frac{x^{2c}}{t}$$

- Hope to remove t^2 by exploiting the condition $L_t(q, r) \ge 1$.
- But how to remove the factor $x^{o(1)}$?

One divisor to rule them all

The guiding model problem

Let $S \subset [x, 2x]$ be a set of x^c integers. Assume there are $\geq |S|^2/t$ pairs $(q, r) \in S \times S$ with $gcd(q, r) \geq x^{1-c}/t$. Must it be the case that there is an integer $d \geq x^{1-c}/t$ that divides $\gg |S'|t^{-O(1)}$ elements of S?

If yes, we are done: replace S by $dS' = \{ dq : q \in S' \}$.

We then have:

- $\mathcal{S}' \subset [1, 2x/d] \subset [1, 2tx^c]$
- $\#S' \ge x^c t^{-O(1)}$ (almost positive proportion)

→ Use the anatomical condition $L_t(q, r) \ge 1$ to annihilate $t^{O(1)}$

The graph of dependencies

Consider the graph $G = (S, \mathcal{E})$, where:

- $\mathcal{S} \subset [x, 2x] \cap \mathbb{Z}$ with $\#\mathcal{S} = x^c$
- $\mathcal{E} = \{ (v, w) \in \mathcal{S} \times \mathcal{S} : \gcd(v, w) \ge x^{1-c}/t, \ L_t(v, w) \ge 1 \}$

Assuming that the edge density is $\ge 1/t$, must it be the case that a positive proportion of the edges arise from a fixed divisor $d \ge x^{1-c}/t$?

Compressing GCD graphs

The tuple $G = (\mathcal{V}, \mathcal{W}, \mathcal{E}, M, N, D, u)$ is called a *CGD graph* if:

- $(\mathcal{V}, \mathcal{W}, \mathcal{E})$ is a bipartite graph;
- $\mathcal{V} \subset [M, 2M]$ and $\mathcal{W} \subset [N, 2N]$;
- $\mathcal{E} \subset \{(v, w) \in \mathcal{V} \times \mathcal{W} : gcd(v, w) \ge D, L_t(v, w) \ge u\};$

Goal: start with $G^{\text{start}} = (S, S, \mathcal{E}^{\text{start}}, x, x^{1-c}/t, 1)$ where $\mathcal{E}^{\text{start}} = \{(v, w) \in S \times S : \text{gcd}(v, w) \ge x^{1-c}/t, L_t(v, w) \ge 1\}.$

Arrive at $G^{\text{end}} = (\mathcal{V}^{\text{end}}, \mathcal{W}^{\text{end}}, \mathcal{E}^{\text{end}}, M^{\text{end}}, N^{\text{end}}, D^{\text{end}}, 1/2)$, where:

- *D*^{end} = 1 (i.e. no more GCD conditions);
- $M^{\text{end}}N^{\text{end}} \leq \left(\frac{x}{x^{1-c}/t}\right)^2 = t^2 x^{2c}$ (because we have factored out one fixed divisor of size $\geq x^{1-c}/t$).

Also need: $\#\mathcal{E}^{\text{end}} \ge x^{2c}t^{-O(1)}$.

Working prime by prime

For simplicity: S contains only square-frees

V_p = {*v*/*p* : *v* ∈ V, *p*|*v*} ⊂ [*x*/*p*, 2*x*/*p*] *V_p* = {*v* ∈ V : *p* ∤ *v*} ⊂ [*x*, 2*x*]

"subgraph"	M	N	D	MN/D^2
$(\mathcal{V},\mathcal{W})$	X	X	x ^{1-c}	x ^{2c}
$(\mathcal{V}_{\mathcal{P}},\mathcal{W}_{\mathcal{P}})$	x/p	x/p	x ^{1-c} /p	x ^{2c}
$(\mathcal{V}_{\hat{p}},\mathcal{W}_{\hat{p}})$	X	X	x ^{1-c}	x ^{2c}
$(\mathcal{V}_{\hat{p}},\mathcal{W}_{p})$	X	<i>x</i> / <i>p</i>	x ^{1-c}	х ^{2с} /р
$\overline{(\mathcal{V}_{\rho},\mathcal{W}_{\hat{\rho}})}$	x/p	X	x ^{1-c}	x ^{2c} /p

A quality-increment argument

"subgraph"	M	N	D	MN/D^2
$(\mathcal{V},\mathcal{W})$	X	X	x ^{1-c}	x ^{2c}
$(\mathcal{V}_{p},\mathcal{W}_{p})$	x/p	<i>x</i> / <i>p</i>	x ^{1-c} /p	x ^{2c}
$(\mathcal{V}_{\hat{p}},\mathcal{W}_{\hat{p}})$	X	X	x ^{1-c}	x ^{2c}
$(\mathcal{V}_{\hat{p}},\mathcal{W}_{p})$	X	x/p	x ^{1-c}	x ^{2c} /p
$(\mathcal{V}_{p},\mathcal{W}_{\hat{p}})$	x/p	X	x ^{1-c}	x ^{2c} /p

quality of a GCD graph: $q(G) = \delta(G)^{10} \cdot |\mathcal{V}| \cdot |\mathcal{W}| \cdot \frac{D^2}{MN}$

Hard cases : $\frac{|\mathcal{V}_p|}{|\mathcal{V}|}, \frac{|\mathcal{W}_p|}{|\mathcal{W}|} = 1 - O(1/p)$ or $\frac{|\mathcal{V}_{\hat{p}}|}{|\mathcal{V}|}, \frac{|\mathcal{W}_{\hat{p}}|}{|\mathcal{W}|} = 1 - O(1/p).$

Must make use of the weight $\varphi(v)/v$ to deal with them $\rightarrow \frac{extra gain of}{factor 1 + 1/p}$ in assymetric case

Thank you!