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Diophantine approximation

Given an irrational number α, we seek rational approximations

a
q
≈ α

Two things to look for:
• the complexity of the approximation, i.e. how big q is
• the quality of the approximation, i.e. how close a/q is to α

Optimal balance of complexity vs. quality?

i.e. for which choices of (∆q)∞q=1 do we have∞-many solutions to∣∣∣∣α− a
q

∣∣∣∣ 6 ∆q ?



Continued fractions
Let α ∈ [0,1] \Q and define:

n1 = b1/αc  α =
1

n1 + α1
, 0 < α1 < 1

n2 = b1/α1c  α =
1

n1 +
1

n2 + α2

, 0 < α2 < 1

α ≈
aj

qj
:=

1

n1 +
1

n2 +
1

· · ·+
1
nj

= j-th convergent

We have the recurrence formula
{

aj = njaj−1 + aj−2
qj = njqj−1 + qj−2



CF as best approximations

∣∣∣∣α− aj

qj

∣∣∣∣ = min
{∣∣∣∣α− a

q

∣∣∣∣ : 1 6 q 6 qj

}

1
2qjqj+1

6

∣∣∣∣α− aj

qj

∣∣∣∣ 6 1
qjqj+1

<
1
q2

j

∣∣∣∣α− a
q

∣∣∣∣ < 1
2q2 & (a,q) = 1 =⇒ a

q
∈
{

a1

q1
,
a2

q2
, . . .

}



Metric diophantine approximation

λ = Lebesgue measure

Question: What is the typical quality of approximation of α by its
convergents (i.e. what happens λ-almost everywhere)?

• Example: it is known that the sequence n1,n2, . . . is typically
unbounded.

• Given errors (∆q)∞q=1, let

K := {α ∈ [0,1] : |α− a/q| 6 ∆q for∞-many a,q}

Khinchin (1924) proved that if q2∆q ↘, then:∑
q q∆q <∞ =⇒ λ(K) = 0∑
q q∆q =∞ =⇒ λ(K) = 1

Corollary: for a typical α, we have |α− a/q| 6 1/(q2 log q)∞-often
(and a/q must be a convergent as soon as q > 10)



Why is Khinchin correct?

Kq :=
⋃

06a6q

[a
q
−∆q,

a
q

+ ∆q

]
N(α) = #{q : α ∈ Kq}

Eα∈[0,1][N(α)] =
∑

q

λ(Kq) = 2
∑

q

q∆q

K := lim sup
q→∞

Kq = {α ∈ [0,1] : α ∈ Kq for∞-many q}

• ‘easy’ direction of Borel-Cantelli :
∑
q∈S

q∆q <∞ ⇒ λ(K) = 0.

• Khinchin’s theorem establishes the ‘hard’ direction of Borel-Cantelli
when q2∆q ↘
Note: must show the sets Kq are sufficiently quasi-independent.



The Duffin-Schaeffer conjecture
Question: What is the most general Khinchin-type result?

i.e. for which sequences (∆q)∞q=1 are there∞-many solutions to∣∣∣∣α− a
q

∣∣∣∣ 6 ∆q ?

• If ∆qq2 ↘, then ∆q = O(1/q2).
What about larger ∆q? (We are moving away from the theory of
continued fractions.)

• If ∆qq2 ↘, then either ∆q > 0 for all q, or ∆q = 0 for all large
enough q.
What about sequences supported on sparser sets? e.g. using
denominators that are primes, powers of 10, or perfect squares?

 must focus on reduced fractions (avoids overcounting; deals with
non-multiplicative structure of support of ∆q)



The Duffin-Schaeffer conjecture

Aq :=
⋃

16a6q
gcd(a,q)=1

[a
q
−∆q,

a
q

+ ∆q

]
, A = lim sup

q→∞
Aq

• Here λ(Aq) = 2ϕ(q)∆q, where

ϕ(q) = #(Z/qZ)∗ = q
∏
p|q

(1− 1/p) = Euler’s totient function

• Hence, the ‘easy’ Borel-Cantelli lemma yields:∑
q

ϕ(q)∆q <∞ ⇒ λ(A) = 0

• Duffin and Schaeffer (1941) conjecture a strong converse is also true:∑
q

ϕ(q)∆q =∞ ⇒ λ(A) = 1.

• Gallagher (1961) proved there is 0-1 law: λ(A) ∈ {0,1}



A key difference

S := supp(∆q) = {q : ∆q > 0}

S could be a very sparse/irregular set, which also forces ∆q to be large
(can no longer use continued fractions)

We can think of the Duffin-Schaeffer Conjecture (DSC) as follows:

We are given:
• S a set of admissible denominators
• for each q ∈ S, an admissible error 0 < ∆q 6 1

2q

A :=

{
α ∈ [0,1] :

∣∣∣∣α− a
q

∣∣∣∣ 6 ∆q for∞-many q ∈ S, gcd(a,q) = 1
}

Question: λ(A) = 0 or λ(A) = 1?



Previous results on DSC

• Duffin-Schaeffer (1941): DSC is true when ϕ(q) � q on average
when weighted with (∆q)q∈S

Example: S = {primes}

• Erdős (1970) & Vaaler (1978): DSC is true when ∆q = O(1/q2)

(useful when S is relatively large so that
∑

q∈S ϕ(q)/q2 =∞)

• Pollington-Vaughan (1990): DSC is true in Rd for d > 1

• Many results establishing DSC when there is ‘extra divergence’,
i.e. when

∑
q∈S

ϕ(q)∆q
Lq

=∞ ;

Aistleitner (2019): can take Lq = (log log q)ε



New results
Theorem (K.-Maynard (2019))
The Duffin-Schaeffer conjecture is true

Corollary (Catlin’s conjecture)
K := {α ∈ [0,1] : |α− a/q| 6 ∆q for∞-many a,q}
C :=

∑
q ϕ(q) max{∆q,∆2q, . . . }

We then have λ(K) = 1 when C =∞, whereas λ(K) = 0 when C <∞.

Using a theorem of Beresnevich-Velani we also obtain:

Corollary
A := {α ∈ [0,1] : |α− a/q| 6 ∆q for inf. many coprime a,q}
Assume

∑
q ϕ(q)∆q <∞, so that λ(A) = 0. Then

dimHausdorff(A) = min
{
β > 0 :

∑
q

ϕ(q)∆β
q <∞

}



Inverting Borel-Cantelli

Set-up : Aq =
⋃

16a6q
gcd(a,q)=1

[a
q
−∆q,

a
q

+ ∆q

]
, A = lim sup

q→∞
q∈S

Aq,

λ(Aq) = 2ϕ(q)∆q,
∑
q∈S

λ(Aq) =∞.

Working heuristic: the sets Aq are quasi-independent events of the
probability space [0,1] and should thus have limited overlap if the sum
of their measures is 6 1.

Goal :
∑

q∈[x ,y ]∩S

λ(Aq) ≈ 1 =⇒ λ(
⋃

q∈[x ,y ]∩S

Aq) ≈ 1.

This is enough because it implies λ(A) > 0, and thus λ(A) = 1 by
Gallagher’s 0-1 law.



Cauchy-Schwarz

• N(α) = #{q ∈ [x , y ] ∩ S : α ∈ Aq}  
⋃

q∈[x ,y ]∩S

Aq = supp(N)

•
∫

N(α)dα =
∑

q∈[x ,y ]∩S

∫
1Aq (α)dα =

∑
q∈[x ,y ]∩S

λ(Aq)

•
(∫

N(α)dα
)2
6 λ

(
supp(N)

) ∫
N(α)2dα

⇔
∑

q∈[x ,y ]∩S

λ(Aq) 6 λ
( ⋃

q∈[x ,y ]∩S

Aq

) ∑
q,r∈[x ,y ]∩S

λ(Aq ∩ Ar ).

Revised goal:
∑

q∈[x ,y ]∩S

λ(Aq) ≈ 1 =⇒
∑

q,r∈[x ,y ]∩S

λ(Aq ∩ Ar ) . 1



The Erdős-Vaaler argument

Assume ∆q = 1/q2 for q ∈ S, and that y = 2x (to fix size of q)

∑
q∈[x ,2x ]∩S

λ(Aq) ≈ 1 ⇐⇒
∑

q∈[x ,2x ]∩S

ϕ(q)

q
≈ x

For simplicity: ignore the weights ϕ(q)/q and think of S as an
arbitrary set of � x integers in [x ,2x ]

Pollington-Vaughan: for q, r ∈ S, we have

λ(Aq ∩ Ar )

λ(Aq)λ(Ar )
> log t =⇒ Lt (q, r) :=

∑
p| qr

gcd(q,r)2

p>t

1
p
> 1.

 
∑

q,r∈[x ,2x ]∩S

λ(Aq ∩Ar ) .
∫ ∞

1

#{q, r ∈ [x ,2x ] : Lt (q, r) > 1}
x2 · dt

t



Anatomical statistics

Eq,r∈[x ,2x ]

[
Lt (q, r)

]
6 Eq,r∈[x ,2x ]

[ ∑
p|q, p>t

1
p

+
∑

p|r , p>t

1
p

]

= 2
∑
p>t

1
p
· Pq∈[x ,2x ](p|q)

≈ 2
∑
p>t

1
p2 .

2
t log t

In fact, using Chernoff’s inequality we find:

#{q, r ∈ [x ,2x ] : Lt (q, r) > 1}
x2 = O(e−t )

 
∑

q,r∈[x ,2x ]∩S

λ(Aq ∩ Ar ) .
∫ ∞

1
O(e−t )dt = O(1).



Generalizing Erdős-Vaaler
Assume ∃c ∈ (0,1) such that ∆q = 1/q1+c for q ∈ S.∑

q∈[x ,2x ]∩S

λ(Aq) ≈ 1 ⇐⇒
∑

q∈[x ,2x ]∩S

ϕ(q)

q
≈ xc

For simplicity: ignore the weights ϕ(q)/q and think of S as an
arbitrary set of xc integers in [x ,2x ]

Pollington-Vaughan: for q, r ∈ S, we have

λ(Aq ∩ Ar )

λ(Aq)λ(Ar )
> log t =⇒

{
(1) Lt (q, r) > 1
(2) x1−c/t 6 gcd(q, r) 6 x1−c

}
(Think of t as large but much smaller than x .)

 
∑

q,r∈[x ,2x ]∩S

λ(Aq∩Ar ) .
∫ ∞

1

#
{

q, r ∈ S :
Lt (q, r) > 1
t−1 6 gcd(q,r)

x1−c 6 1

}
x2c ·dt

t



Two conditions

Goal: if S ⊂ [x ,2x ] is a set of xc integers, show that

#
{

q, r ∈ S :
Lt (q, r) > 1
t−1 6 gcd(q,r)

x1−c 6 1

}
6

x2c

t
.

(1) The anatomical condition Lt (q, r) > 1 offers exponential gains in
t when q, r are sampled over a dense subset of [x ,2x ]

(2) x1−c > gcd(q, r) > x1−c/t is a structural condition. The heart of
the proof is understanding how often it occurs.



Analysis of the structural condition gcd(q, r) ≈ x1−c

∑
x6q62x

gcd(q,r)>x1−c/t

1 6
∑
d |r

d>x1−c/t

∑
x6q62x

d |q

1

6
∑
d |r

d>x1−c/t

x
d

6 txc ·#{d |r}

 #
{

q, r ∈ S :
Lt (q, r) > 1
gcd(q, r) > x1−c

t

}
. tx2c+o(1) = t2 · xo(1) · x2c

t

• Hope to remove t2 by exploiting the condition Lt (q, r) > 1.

• But how to remove the factor xo(1)?



One divisor to rule them all

The guiding model problem

Let S ⊂ [x ,2x ] be a set of xc integers. Assume there are > |S|2/t pairs
(q, r) ∈ S × S with gcd(q, r) > x1−c/t . Must it be the case that there is
an integer d > x1−c/t that divides� |S ′|t−O(1) elements of S?

If yes, we are done: replace S by dS ′ = {dq : q ∈ S ′}.

We then have:
• S ′ ⊂ [1,2x/d ] ⊂ [1,2txc]

• #S ′ > xc t−O(1) (almost positive proportion)

 Use the anatomical condition Lt (q, r) > 1 to annihilate tO(1)



The graph of dependencies

Consider the graph G = (S, E), where:
• S ⊂ [x ,2x ] ∩ Z with #S = xc

• E = {(v ,w) ∈ S × S : gcd(v ,w) > x1−c/t , Lt (v ,w) > 1}

Assuming that the edge density is > 1/t , must it be the case that a
positive proportion of the edges arise from a fixed divisor d > x1−c/t?



Compressing GCD graphs

The tuple G = (V,W, E ,M,N,D,u) is called a CGD graph if:
• (V,W, E) is a bipartite graph;
• V ⊂ [M,2M] andW ⊂ [N,2N];
• E ⊂ {(v ,w) ∈ V ×W : gcd(v ,w) > D, Lt (v ,w) > u};

Goal: start with Gstart = (S,S, Estart, x , x1−c/t ,1) where
Estart = {(v ,w) ∈ S × S : gcd(v ,w) > x1−c/t , Lt (v ,w) > 1}.

Arrive at Gend = (Vend,Wend, Eend,Mend,Nend,Dend,1/2), where:
• Dend = 1 (i.e. no more GCD conditions);

• MendNend 6
( x

x1−c/t

)2
= t2x2c (because we have factored out one

fixed divisor of size > x1−c/t).

Also need: #Eend > x2c t−O(1).



Working prime by prime
For simplicity: S contains only square-frees

• Vp = {v/p : v ∈ V, p|v} ⊂ [x/p,2x/p]
• Vp̂ = {v ∈ V : p - v} ⊂ [x ,2x ]

pVp

Vp̂

pWp

Wp̂

“subgraph” M N D MN/D2

(V,W) x x x1−c x2c

(Vp,Wp) x/p x/p x1−c/p x2c

(Vp̂,Wp̂) x x x1−c x2c

(Vp̂,Wp) x x/p x1−c x2c/p
(Vp,Wp̂) x/p x x1−c x2c/p



A quality-increment argument

“subgraph” M N D MN/D2

(V,W) x x x1−c x2c

(Vp,Wp) x/p x/p x1−c/p x2c

(Vp̂,Wp̂) x x x1−c x2c

(Vp̂,Wp) x x/p x1−c x2c/p
(Vp,Wp̂) x/p x x1−c x2c/p

quality of a GCD graph: q(G) = δ(G)10 · |V| · |W| · D2

MN

Hard cases :
|Vp|
|V|

,
|Wp|
|W|

= 1−O(1/p) or
|Vp̂|
|V|

,
|Wp̂|
|W|

= 1−O(1/p).

Must make use of the weight ϕ(v)/v to deal with them extra gain of
factor 1 + 1/p in assymetric case



Thank you!


