On the Duffin-Schaeffer conjecture

Dimitris Koukoulopoulos ${ }^{1}$
joint work with James Maynard²
${ }^{1}$ Université de Montréal
${ }^{2}$ University of Oxford
Stony Brook University
October 3, 2019

Diophantine approximation

Given an irrational number α, we seek rational approximations

$$
\frac{a}{q} \approx \alpha
$$

Two things to look for:

- the complexity of the approximation, i.e. how big q is
- the quality of the approximation, i.e. how close a / q is to α

Optimal balance of complexity vs. quality?
i.e. for which choices of $\left(\Delta_{q}\right)_{q=1}^{\infty}$ do we have ∞-many solutions to

$$
\left|\alpha-\frac{a}{q}\right| \leqslant \Delta_{q} ?
$$

Continued fractions

Let $\alpha \in[0,1] \backslash \mathbb{Q}$ and define:

$$
\begin{gathered}
n_{1}=\lfloor 1 / \alpha\rfloor \rightsquigarrow \alpha=\frac{1}{n_{1}+\alpha_{1}}, \quad 0<\alpha_{1}<1 \\
n_{2}=\left\lfloor 1 / \alpha_{1}\right\rfloor \rightsquigarrow \alpha=\frac{1}{n_{1}+\frac{1}{n_{2}+\alpha_{2}}}, \quad 0<\alpha_{2}<1 \\
\alpha \approx \frac{a_{j}}{q_{j}}:=\frac{1}{n_{1}+\frac{1}{n_{2}+\frac{1}{\cdots+\frac{1}{n_{j}}}}}=j \text {-th convergent }
\end{gathered}
$$

We have the recurrence formula $\left\{\begin{array}{l}a_{j}=n_{j} a_{j-1}+a_{j-2} \\ q_{j}=n_{j} q_{j-1}+q_{j-2}\end{array}\right.$

CF as best approximations

$$
\begin{gathered}
\left|\alpha-\frac{a_{j}}{q_{j}}\right|=\min \left\{\left|\alpha-\frac{a}{q}\right|: 1 \leqslant q \leqslant q_{j}\right\} \\
\frac{1}{2 q_{j} q_{j+1}} \leqslant\left|\alpha-\frac{a_{j}}{q_{j}}\right| \leqslant \frac{1}{q_{j} q_{j+1}}<\frac{1}{q_{j}^{2}} \\
\left|\alpha-\frac{a}{q}\right|<\frac{1}{2 q^{2}} \& \quad(a, q)=1 \quad \Longrightarrow \quad \frac{a}{q} \in\left\{\frac{a_{1}}{q_{1}}, \frac{a_{2}}{q_{2}}, \ldots\right\}
\end{gathered}
$$

Metric diophantine approximation

$\lambda=$ Lebesgue measure

Question: What is the typical quality of approximation of α by its convergents (i.e. what happens λ-almost everywhere)?

- Example: it is known that the sequence n_{1}, n_{2}, \ldots is typically unbounded.
- Given errors $\left(\Delta_{q}\right)_{q=1}^{\infty}$, let

$$
\mathcal{K}:=\left\{\alpha \in[0,1]:|\alpha-a / q| \leqslant \Delta_{q} \text { for } \infty \text {-many } a, q\right\}
$$

Khinchin (1924) proved that if $q^{2} \Delta_{q} \searrow$, then:

$$
\begin{array}{lll}
\sum_{q} q \Delta_{q}<\infty & \Longrightarrow \quad \lambda(\mathcal{K})=0 \\
\sum_{q} q \Delta_{q}=\infty & \Longrightarrow \quad \lambda(\mathcal{K})=1
\end{array}
$$

Corollary: for a typical α, we have $|\alpha-a / q| \leqslant 1 /\left(q^{2} \log q\right) \infty$-often (and a / q must be a convergent as soon as $q \geqslant 10$)

Why is Khinchin correct?

$$
\begin{gathered}
\mathcal{K}_{q}:=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right] \\
N(\alpha)=\#\left\{q: \alpha \in \mathcal{K}_{q}\right\} \\
\mathbb{E}_{\alpha \in[0,1]}[N(\alpha)]=\sum_{q} \lambda\left(\mathcal{K}_{q}\right)=2 \sum_{q} q \Delta_{q} \\
\mathcal{K}:=\limsup _{q \rightarrow \infty} \mathcal{K}_{q}=\left\{\alpha \in[0,1]: \alpha \in \mathcal{K}_{q} \text { for } \infty \text {-many } q\right\}
\end{gathered}
$$

- 'easy' direction of Borel-Cantelli : $\quad \sum_{q \in \mathcal{S}} q \Delta_{q}<\infty \Rightarrow \lambda(\mathcal{K})=0$.
- Khinchin's theorem establishes the 'hard' direction of Borel-Cantelli when $q^{2} \Delta_{q} \searrow$
Note: must show the sets \mathcal{K}_{q} are sufficiently quasi-independent.

The Duffin-Schaeffer conjecture

Question: What is the most general Khinchin-type result?
i.e. for which sequences $\left(\Delta_{q}\right)_{q=1}^{\infty}$ are there ∞-many solutions to

$$
\left|\alpha-\frac{a}{q}\right| \leqslant \Delta_{q} ?
$$

- If $\Delta_{q} q^{2} \searrow$, then $\Delta_{q}=O\left(1 / q^{2}\right)$.

What about larger Δ_{q} ? (We are moving away from the theory of continued fractions.)

- If $\Delta_{q} q^{2} \searrow$, then either $\Delta_{q}>0$ for all q, or $\Delta_{q}=0$ for all large enough q.
What about sequences supported on sparser sets? e.g. using denominators that are primes, powers of 10 , or perfect squares?
\rightsquigarrow must focus on reduced fractions (avoids overcounting; deals with non-multiplicative structure of support of Δ_{q})

The Duffin-Schaeffer conjecture

$$
\mathcal{A}_{q}:=\bigcup_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q}
$$

- Here $\lambda\left(\mathcal{A}_{q}\right)=2 \varphi(q) \Delta_{q}$, where

$$
\varphi(q)=\#(\mathbb{Z} / q \mathbb{Z})^{*}=q \prod_{p \mid q}(1-1 / p)=\text { Euler's totient function }
$$

- Hence, the 'easy’ Borel-Cantelli lemma yields:

$$
\sum_{q} \varphi(q) \Delta_{q}<\infty \quad \Rightarrow \quad \lambda(\mathcal{A})=0
$$

- Duffin and Schaeffer (1941) conjecture a strong converse is also true:

$$
\sum_{q} \varphi(q) \Delta_{q}=\infty \quad \Rightarrow \quad \lambda(\mathcal{A})=1
$$

- Gallagher (1961) proved there is 0-1 law:

$$
\lambda(\mathcal{A}) \in\{0,1\}
$$

A key difference

$$
\mathcal{S}:=\operatorname{supp}\left(\Delta_{q}\right)=\left\{q: \Delta_{q}>0\right\}
$$

\mathcal{S} could be a very sparse/irregular set, which also forces Δ_{q} to be large (can no longer use continued fractions)

We can think of the Duffin-Schaeffer Conjecture (DSC) as follows:
We are given:

- \mathcal{S} a set of admissible denominators
- for each $q \in \mathcal{S}$, an admissible error $0<\Delta_{q} \leqslant \frac{1}{2 q}$
$\mathcal{A}:=\left\{\alpha \in[0,1]:\left|\alpha-\frac{a}{q}\right| \leqslant \Delta_{q} \quad\right.$ for ∞-many $\left.q \in \mathcal{S}, \operatorname{gcd}(a, q)=1\right\}$
Question: $\quad \lambda(\mathcal{A})=0 \quad$ or $\quad \lambda(\mathcal{A})=1$?

Previous results on DSC

- Duffin-Schaeffer (1941): DSC is true when $\varphi(q) \asymp q$ on average when weighted with $\left(\Delta_{q}\right)_{q \in \mathcal{S}}$
Example: $\mathcal{S}=\{$ primes $\}$
- Erdős (1970) \& Vaaler (1978): DSC is true when $\Delta_{q}=O\left(1 / q^{2}\right)$ (useful when \mathcal{S} is relatively large so that $\sum_{q \in \mathcal{S}} \varphi(q) / q^{2}=\infty$)
- Pollington-Vaughan (1990): DSC is true in \mathbb{R}^{d} for $d>1$
- Many results establishing DSC when there is 'extra divergence', i.e. when $\sum_{q \in \mathcal{S}} \frac{\varphi(q) \Delta_{q}}{L_{q}}=\infty$;

Aistleitner (2019): can take $L_{q}=(\log \log q)^{\varepsilon}$

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

Corollary (Catlin's conjecture)

$\mathcal{K}:=\left\{\alpha \in[0,1]:|\alpha-a / q| \leqslant \Delta_{q}\right.$ for ∞-many $\left.a, q\right\}$
$C:=\sum_{q} \varphi(q) \max \left\{\Delta_{q}, \Delta_{2 q}, \ldots\right\}$
We then have $\lambda(\mathcal{K})=1$ when $C=\infty$, whereas $\lambda(\mathcal{K})=0$ when $C<\infty$.
Using a theorem of Beresnevich-Velani we also obtain:

Corollary

$\mathcal{A}:=\left\{\alpha \in[0,1]:|\alpha-a / q| \leqslant \Delta_{q}\right.$ for inf. many coprime $\left.a, q\right\}$
Assume $\sum_{q} \varphi(q) \Delta_{q}<\infty$, so that $\lambda(\mathcal{A})=0$. Then

$$
\operatorname{dim}_{\text {Hausdorff }}(\mathcal{A})=\min \left\{\beta \geqslant 0: \sum_{q} \varphi(q) \Delta_{q}^{\beta}<\infty\right\}
$$

Inverting Borel-Cantelli

$$
\begin{gathered}
\text { Set-up : } \mathcal{A}_{q}=\bigcup_{\substack{1 \leq a \leq q \\
\operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right], \quad \mathcal{A}=\limsup _{\substack{q \rightarrow \infty \\
q \in \mathcal{S}}} \mathcal{A}_{q}, \\
\lambda\left(\mathcal{A}_{q}\right)=2 \varphi(q) \Delta_{q}, \quad \sum_{q \in \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right)=\infty .
\end{gathered}
$$

Working heuristic: the sets \mathcal{A}_{q} are quasi-independent events of the probability space $[0,1]$ and should thus have limited overlap if the sum of their measures is $\leqslant 1$.

Goal: $\quad \sum_{q \in[x, y] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right) \approx 1 \Longrightarrow \lambda\left(\bigcup_{q \in[x, y] \cap \mathcal{S}} \mathcal{A}_{q}\right) \approx 1$.
This is enough because it implies $\lambda(\mathcal{A})>0$, and thus $\lambda(\mathcal{A})=1$ by Gallagher's 0-1 law.

Cauchy-Schwarz

- $N(\alpha)=\#\left\{q \in[x, y] \cap \mathcal{S}: \alpha \in \mathcal{A}_{q}\right\} \quad \rightsquigarrow \bigcup_{q \in[x, y] \cap \mathcal{S}} \mathcal{A}_{q}=\operatorname{supp}(N)$

$$
\begin{aligned}
& \text { - } \int N(\alpha) \mathrm{d} \alpha=\sum_{q \in[x, y] \cap \mathcal{S}} \int 1_{\mathcal{A}_{q}}(\alpha) \mathrm{d} \alpha=\sum_{q \in[x, y] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right) \\
& \text { - }\left(\int N(\alpha) \mathrm{d} \alpha\right)^{2} \leqslant \lambda(\operatorname{supp}(N)) \int N(\alpha)^{2} \mathrm{~d} \alpha \\
& \Leftrightarrow \quad \sum_{q \in[x, y] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right) \leqslant \lambda\left(\bigcup_{q \in[x, y] \cap \mathcal{S}} \mathcal{A}_{q}\right) \sum_{q, r \in[x, y] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) .
\end{aligned}
$$

Revised goal: $\sum_{q \in[x, y] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right) \approx 1 \Longrightarrow \sum_{q, r \in[x, y] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \lesssim 1$

The Erdős-Vaaler argument

Assume $\Delta_{q}=1 / q^{2}$ for $q \in \mathcal{S}$, and that $y=2 x$ (to fix size of q)

$$
\sum_{q \in[x, 2 x] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right) \approx 1 \quad \Longleftrightarrow \quad \sum_{q \in[x, 2 x] \cap \mathcal{S}} \frac{\varphi(q)}{q} \approx x
$$

For simplicity: ignore the weights $\varphi(q) / q$ and think of \mathcal{S} as an arbitrary set of $\asymp x$ integers in $[x, 2 x]$

Pollington-Vaughan: for $q, r \in \mathcal{S}$, we have

$$
\begin{aligned}
& \frac{\lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right)}{\lambda\left(\mathcal{A}_{q}\right) \lambda\left(\mathcal{A}_{r}\right)} \geqslant \log t \quad \Longrightarrow \quad L_{t}(q, r):=\sum_{\substack{p \left\lvert\, \frac{q}{\operatorname{coc}(q, r)^{2}} \\
p \geqslant t\right.}} \frac{1}{p} \geqslant 1 . \\
& \sum_{q, r \in[x, 2 x] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \\
& \lesssim \int_{1}^{\infty} \frac{\#\left\{q, r \in[x, 2 x]: L_{t}(q, r) \geqslant 1\right\}}{x^{2}} \cdot \frac{\mathrm{~d} t}{t}
\end{aligned}
$$

Anatomical statistics

$$
\begin{aligned}
\mathbb{E}_{q, r \in[x, 2 x]}\left[L_{t}(q, r)\right] & \leqslant \mathbb{E}_{q, r \in[x, 2 x]}\left[\sum_{p \mid q, p \geqslant t} \frac{1}{p}+\sum_{p \mid r, p \geqslant t} \frac{1}{p}\right] \\
& =2 \sum_{p \geqslant t} \frac{1}{p} \cdot \mathbb{P}_{q \in[x, 2 x]}(p \mid q) \\
& \approx 2 \sum_{p \geqslant t} \frac{1}{p^{2}} \lesssim \frac{2}{t \log t}
\end{aligned}
$$

In fact, using Chernoff's inequality we find:

$$
\frac{\#\left\{q, r \in[x, 2 x]: L_{t}(q, r) \geqslant 1\right\}}{x^{2}}=O\left(e^{-t}\right)
$$

$$
\rightsquigarrow \quad \sum_{q, r \in[x, 2 x] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \lesssim \int_{1}^{\infty} O\left(e^{-t}\right) \mathrm{d} t=O(1)
$$

Generalizing Erdős-Vaaler

Assume $\exists c \in(0,1)$ such that $\Delta_{q}=1 / q^{1+c}$ for $q \in \mathcal{S}$.

$$
\sum_{q \in[x, 2 x] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q}\right) \approx 1 \quad \Longleftrightarrow \quad \sum_{q \in[x, 2 x] \cap \mathcal{S}} \frac{\varphi(q)}{q} \approx x^{c}
$$

For simplicity: ignore the weights $\varphi(q) / q$ and think of \mathcal{S} as an arbitrary set of x^{c} integers in $[x, 2 x]$
Pollington-Vaughan: for $q, r \in \mathcal{S}$, we have

$$
\frac{\lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right)}{\lambda\left(\mathcal{A}_{q}\right) \lambda\left(\mathcal{A}_{r}\right)} \geqslant \log t \quad \Longrightarrow \quad\left\{\begin{array}{ll}
(\mathbf{1}) & L_{t}(q, r) \geqslant 1 \\
(\mathbf{2}) & x^{1-c} / t \leqslant \operatorname{gcd}(q, r) \leqslant x^{1-c}
\end{array}\right\}
$$

(Think of t as large but much smaller than x.)

$$
\sum_{q, r \in[x, 2 x] \cap \mathcal{S}} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \lesssim \int_{1}^{\infty} \frac{\#\left\{q, r \in \mathcal{S}: \begin{array}{l}
L_{t}(q, r) \geqslant 1 \\
t^{-1} \leqslant \frac{g c d(q, r)}{x^{1-c}} \leqslant 1
\end{array}\right\}}{x^{2 c}} \cdot \frac{\mathrm{~d} t}{t}
$$

Two conditions

Goal: if $\mathcal{S} \subset[x, 2 x]$ is a set of x^{c} integers, show that

$$
\#\left\{q, r \in \mathcal{S}: \begin{array}{l}
L_{t}(q, r) \geqslant 1 \\
t^{-1} \leqslant \frac{g \operatorname{cd}(q, r)}{x^{1-c}} \leqslant 1
\end{array}\right\} \leqslant \frac{x^{2 c}}{t} .
$$

(1) The anatomical condition $L_{t}(q, r) \geqslant 1$ offers exponential gains in t when q, r are sampled over a dense subset of $[x, 2 x]$
(2) $x^{1-c} \geqslant \operatorname{gcd}(q, r) \geqslant x^{1-c} / t$ is a structural condition. The heart of the proof is understanding how often it occurs.

Analysis of the structural condition $\operatorname{gcd}(q, r) \approx x^{1-c}$

$$
\left.\begin{array}{rl}
\sum_{\substack{x \leqslant q \leqslant 2 x \\
\operatorname{gcd}(q, r) \geqslant x^{1-c} / t}} 1 & \leqslant \sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \sum_{\substack{x \leqslant q \leqslant 2 x \\
d \mid q}} 1 \\
& \leqslant \sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \frac{x}{d} \\
& \leqslant t x^{c} \cdot \#\{d \mid r\}
\end{array}\right\} \quad \#\left\{q, r \in \mathcal{S}: \begin{array}{l}
L_{t}(q, r) \geqslant 1 \\
\left.g c d(q, r) \geqslant \frac{x^{1-c}}{t}\right\}
\end{array} \lesssim t x^{2 c+o(1)}=t^{2} \cdot x^{o(1)} \cdot \frac{x^{2 c}}{t} .\right.
$$

- Hope to remove t^{2} by exploiting the condition $L_{t}(q, r) \geqslant 1$.
- But how to remove the factor $x^{o(1)}$?

One divisor to rule them all

The guiding model problem

Let $\mathcal{S} \subset[x, 2 x]$ be a set of x^{c} integers. Assume there are $\geqslant|\mathcal{S}|^{2} / t$ pairs $(q, r) \in \mathcal{S} \times \mathcal{S}$ with $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$. Must it be the case that there is an integer $d \geqslant x^{1-c} / t$ that divides $\gg\left|\mathcal{S}^{\prime}\right| t^{-O(1)}$ elements of \mathcal{S} ?

If yes, we are done: replace \mathcal{S} by $d \mathcal{S}^{\prime}=\left\{d q: q \in \mathcal{S}^{\prime}\right\}$.
We then have:

- $\mathcal{S}^{\prime} \subset[1,2 x / d] \subset\left[1,2 t x^{c}\right]$
- $\# \mathcal{S}^{\prime} \geqslant x^{c} t^{-O(1)}$ (almost positive proportion)
\rightsquigarrow Use the anatomical condition $L_{t}(q, r) \geqslant 1$ to annihilate $t^{O(1)}$

The graph of dependencies

Consider the graph $G=(\mathcal{S}, \mathcal{E})$, where:

- $\mathcal{S} \subset[x, 2 x] \cap \mathbb{Z}$ with $\# \mathcal{S}=x^{c}$
- $\mathcal{E}=\left\{(v, w) \in \mathcal{S} \times \mathcal{S}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 1\right\}$

Assuming that the edge density is $\geqslant 1 / t$, must it be the case that a positive proportion of the edges arise from a fixed divisor $d \geqslant x^{1-c} / t$?

Compressing GCD graphs

The tuple $G=(\mathcal{V}, \mathcal{W}, \mathcal{E}, M, N, D, u)$ is called a $C G D$ graph if:

- $(\mathcal{V}, \mathcal{W}, \mathcal{E})$ is a bipartite graph;
- $\mathcal{V} \subset[M, 2 M]$ and $\mathcal{W} \subset[N, 2 N]$;
- $\mathcal{E} \subset\left\{(v, w) \in \mathcal{V} \times \mathcal{W}: \operatorname{gcd}(v, w) \geqslant D, L_{t}(v, w) \geqslant u\right\}$;

Goal: start with $G^{\text {start }}=\left(\mathcal{S}, \mathcal{S}, \mathcal{E}^{\text {start }}, x, x^{1-c} / t, 1\right)$ where $\mathcal{E}^{\text {start }}=\left\{(v, w) \in \mathcal{S} \times \mathcal{S}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 1\right\}$.

Arrive at $G^{\text {end }}=\left(\mathcal{V}^{\text {end }}, \mathcal{W}^{\text {end }}, \mathcal{E}^{\text {end }}, M^{\text {end }}, N^{\text {end }}, D^{\text {end }}, 1 / 2\right)$, where:

- $D^{\text {end }}=1$ (i.e. no more GCD conditions);
- $M^{\text {end }} N^{\text {end }} \leqslant\left(\frac{x}{x^{1-c} / t}\right)^{2}=t^{2} x^{2 c}$ (because we have factored out one fixed divisor of size $\geqslant x^{1-c} / t$).

Also need: $\# \mathcal{E}^{\text {end }} \geqslant x^{2 c} t^{-O(1)}$.

Working prime by prime

For simplicity: \mathcal{S} contains only square-frees

- $V_{p}=\{v / p: v \in \mathcal{V}, p \mid v\} \subset[x / p, 2 x / p]$
- $\mathcal{V}_{\hat{p}}=\{v \in \mathcal{V}: p \nmid v\} \subset[x, 2 x]$

"subgraph"	M	N	D	$M N / D^{2}$
$(\mathcal{V}, \mathcal{W})$	x	x	x^{1-c}	$x^{2 c}$
$\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right)$	x / p	x / p	x^{1-c} / p	$x^{2 c}$
$\left(\mathcal{V}_{\hat{p}}, \mathcal{W}_{\hat{p}}\right)$	x	x	x^{1-c}	$x^{2 c}$
$\left(\mathcal{V}_{\hat{p}}, \mathcal{W}_{p}\right)$	x	x / p	x^{1-c}	$x^{2 c} / p$
$\left(\mathcal{V}_{p}, \mathcal{W}_{\hat{p}}\right)$	x / p	x	x^{1-c}	$x^{2 c} / p$

A quality-increment argument

"subgraph"	M	N	D	$M N / D^{2}$
$(\mathcal{V}, \mathcal{W})$	x	x	x^{1-c}	$x^{2 C}$
$\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right)$	x / p	x / p	x^{1-c} / p	$x^{2 C}$
$\left(\mathcal{V}_{\hat{p}}, \mathcal{W}_{\hat{p}}\right)$	x	x	x^{1-c}	$x^{2 C}$
$\left(\mathcal{V}_{\hat{p}}, \mathcal{W}_{p}\right)$	x	x / p	x^{1-c}	$x^{2 C} / p$
$\left(\mathcal{V}_{p}, \mathcal{W}_{\hat{p}}\right)$	x / p	x	x^{1-c}	$x^{2 C} / p$

quality of a GCD graph: $\quad q(G)=\delta(G)^{10} \cdot|\mathcal{V}| \cdot|\mathcal{W}| \cdot \frac{D^{2}}{M N}$

Hard cases: $\frac{\left|\mathcal{V}_{p}\right|}{|\mathcal{V}|}, \frac{\left|\mathcal{W}_{p}\right|}{|\mathcal{W}|}=1-O(1 / p)$ or $\frac{\left|\mathcal{V}_{\hat{\rho}}\right|}{|\mathcal{V}|}, \frac{\left|\mathcal{V}_{\hat{\rho}}\right|}{|\mathcal{W}|}=1-O(1 / p)$.
Must make use of the weight $\varphi(v) / v$ to deal with them \rightsquigarrow extra gain of factor $1+1 / p$ in assymetric case

Thank you!

