On the problem of local connectivity of the Mandelbrot set

Dzmitry Dudko

Stony Brook University
1 March 2018

$$
\begin{aligned}
& f_{c}(z)=z^{2}+c \\
& \operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
\end{aligned}
$$

The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
\begin{aligned}
& f_{c}(z)=z^{2}+c \\
& \operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
\end{aligned}
$$

$$
\text { The Julia set } J_{c}=\partial\{z \mid \operatorname{orb}(z) \text { is bounded }\}
$$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
\begin{aligned}
& f_{c}(z)=z^{2}+c \\
& \operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
\end{aligned}
$$

$$
\text { The Julia set } J_{c}=\partial\{z \mid \operatorname{orb}(z) \text { is bounded }\}
$$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
\begin{aligned}
& f_{c}(z)=z^{2}+c \\
& \operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
\end{aligned}
$$

The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
\begin{aligned}
& f_{c}(z)=z^{2}+c \\
& \operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
\end{aligned}
$$

$$
\text { The Julia set } J_{c}=\partial\{z \mid \operatorname{orb}(z) \text { is bounded }\}
$$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$
$f_{c}(z)=z^{2}+c$
$\operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)$
The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
\begin{aligned}
& f_{c}(z)=z^{2}+c \\
& \operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
\end{aligned}
$$

The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
f_{c}(z)=z^{2}+c
$$

$\operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)$
The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

$$
f_{c}(z)=z^{2}+c
$$

$$
\operatorname{orb}(z)=\left(z, f_{c}(z), f_{c} \circ f_{c}(z), f_{c} \circ f_{c} \circ f_{c}(z), \ldots\right)
$$

The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$

$\operatorname{orb}(z)$ is stable iff $z \notin J_{c}$

The Julia set $J_{c}=\partial\{z \mid \operatorname{orb}(z)$ is bounded $\}$ is either connected, or
a Cantor set

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

The Mandelbrot set $\mathcal{M}=\left\{c \mid J_{c}\right.$ is connected $\}$

f_{c} is stable $\Longleftrightarrow J_{c}$ is stable $\Longleftrightarrow c \notin \partial \mathcal{M}$

$\operatorname{dim}=1$ parameter spaces

$\operatorname{dim}=1$ parameter spaces

dim = 1 parameter spaces

Douady, Hubbard: \mathcal{M} has ∞-many copies of itself every copy is canonically homeomorphic to \mathcal{M}

Douady, Hubbard: \mathcal{M} has ∞-many copies of itself every copy is canonically homeomorphic to \mathcal{M}

Douady, Hubbard: \mathcal{M} has ∞-many copies of itself every copy is canonically homeomorphic to \mathcal{M}

primitive copies

satellite copies

The MLC-conjecture: the Mandelbrot set is locally connected MLC iff $\exists \pi: \overline{\mathbb{D}^{1}} \rightarrow \mathcal{M}$ continuous pinched disk model:

Yoccoz: MLC holds at "non- ∞ renormalizable" parameters Cor: MLC iff canonical homeomorphisms are "expanding"; f.e.

if $\bigcap_{n \geq 0} R^{-n}(\mathcal{M})=\left\{c_{s}\right\}$ is a singleton, then MLC holds at c_{s}

Lyubich; Graczyk and Świątek: \mathbb{R}-version of MLC:

$\bigcap_{n \geq 0} R^{-n}(\mathcal{M}) \cap \mathbb{R}=\left\{c_{s}\right\}$ is a singleton if $\mathcal{M}_{s} \cap \mathbb{R} \neq \emptyset$

Kahn, Lyubich: $\forall \varepsilon>0, R: \mathcal{M}_{s} \rightarrow \mathcal{M}$ are simultaneously expanding if \mathcal{M}_{s} are ε-away from the molecule (primitive case):

$\bigcap_{n>0} R^{-n}(\mathcal{M})=\left\{c_{s}\right\}$ is a singleton -MLC at c_{s}

Kahn, Lyubich: $\forall \varepsilon>0, \boldsymbol{R}: \mathcal{M}_{s} \rightarrow \mathcal{M}$ are simultaneously expanding if \mathcal{M}_{s} are ε-away from the molecule (primitive case):

Kahn, Lyubich: $\forall \varepsilon>0, \boldsymbol{R}: \mathcal{M}_{s} \rightarrow \mathcal{M}$ are simultaneously expanding if \mathcal{M}_{s} are ε-away from the molecule (primitive case):

Thm (Lyubich and DD) $\boldsymbol{R}: \mathcal{M}_{s} \rightarrow \mathcal{M}$ is expanding for some satellite copies \mathcal{M}_{s} on the molecule (first examples):

$\bigcap_{n \geq 0} R^{-n}(\mathcal{M})=\left\{c_{s}\right\}$ is a singleton - MLC at c_{s}

Feigenbaum universality:

 $\exists!c_{\star} \in \mathbb{R}$ such that $R\left(c_{\star}\right)=c_{\star}$Sullivan, McMullen, Lyubich: $\exists R^{\prime}\left(c_{\star}\right)>1$

$$
R\left(c_{\star}+v\right)=c_{\star}+R^{\prime}\left(c_{\star}\right) v+o\left(|v|^{1+\varepsilon}\right)
$$

Feigenbaum scaling is universal:

Renormalization of f

Renormalization of f

Renormalization of f

Renormalization of f

Renormalization of f

$\mathcal{R} f$ is the first return map
$\mathcal{R}:\{$ Maps $\} / \sim \rightarrow\{$ Maps $\} / \sim$

Canonical homeomorphism:

Decomposition $R=$ holonomy $\circ \mathcal{R}$

$\mathcal{R}: Q L \rightarrow Q L$ is analytic (iteration+restriction) $\operatorname{dim}(Q L)=\infty$, but qc-conjugate maps form leaves of codim $=1$ stable foliation

Decomposition $R=$ holonomy $\circ \mathcal{R}$

$\mathcal{R}: Q L \rightarrow Q L$ is analytic (iteration+restriction) $\operatorname{dim}(Q L)=\infty$, but qc-conjugate maps form leaves of codim $=1$ stable foliation

Hyperbolicity of $\mathcal{R}: Q L \rightarrow Q L$

Hyperbolicity of $\mathcal{R}:$ QL \rightarrow QL

Hyperbolicity of $\mathcal{R}: Q L \rightarrow Q L$
unstable

Sullivan, McMullen, Lyubich: hyperbolicity of $\mathcal{R}+$ holonomy prove universality

Scaling around the Golden Siegel parameter

Branner, Douady: \exists partial surjective map

the molecule map
(3-to-1 continuous)

The molecule map and its model - conjugate if MLC

$$
g(z)=z(z+1)^{2}
$$

Pacman is a 2-to-1 map $f: U \rightarrow V$:

www.gatifegbaserch scorr

Pacman is a 2-to-1 map $f: U \rightarrow V$:

Pacman is a 2-to-1 map $f: U \rightarrow V$:

Pacman is a 2-to-1 map $f: U \rightarrow V$:

Pacman is a 2-to-1 map $f: U \rightarrow V$:

Renormalizable pacman

Renormalizable pacman:

Pacman renormalization:

Renormalization of the Rabbit

Renormalization of the Rabbit

Renormalization of the Rabbit

Branner - Douady surgery

analytic operator

Thm (Lyubich, Selinger, and DD)
For periodic parameters we construct a hyperbolic analytic pacman renormalization operator \mathcal{R} with $\operatorname{dim}=1$ unstable man-d

Rem. Periodic points were constructed in 1990s by McMullen for a
"cylinder" renormalization

Thm (Lyubich, Selinger, and DD)

For periodic parameters we construct a hyperbolic analytic pacman renormalization operator \mathcal{R} with dim $=1$ unstable man-d

Inou, Shishikura: hyperbolicity for the cylinder renormalization for high type parameters (perturbative methods)

Thm (Lyubich, Selinger, and DD)
For periodic parameters we construct a hyperbolic analytic pacman renormalization operator \mathcal{R} with dim $=1$ unstable man-d

Inou, Shishikura: hyperbolicity for the cylinder renormalization for high type parameters (perturbative methods)

Thm (Lyubich, Selinger, and DD)
For periodic parameters we construct a hyperbolic analytic pacman renormalization operator \mathcal{R} with $\operatorname{dim}=1$ unstable man-d

Inou, Shishikura: hyperbolicity for the cylinder renormalization for high type parameters (perturbative methods)

Unstable manifold \approx zoomed Mandelbrot set can be studied as a transcendental family

Unstable manifold \approx zoomed Mandelbrot set can be studied as a transcendental family

Lyubich and DD: there is a stable lamination

 unstable
transcendental dynamics

Lyubich and DD: there is a stable lamination unstable

Construct a local leaf

Lyubich and DD: there is a stable lamination unstable

Construct a local leaf

Lyubich and DD: there is a stable lamination unstable

Construct a local leaf, run \mathcal{R}

Lyubich and DD: there is a stable lamination unstable

Construct a local leaf, run \mathcal{R}

Lyubich and DD: there is a stable lamination unstable

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

$$
\boldsymbol{R}=\mathrm{HOLONOMY} \circ \mathcal{R}
$$

Construct a local leaf, run \mathcal{R}

Lyubich and DD: scaling

Cor. Scaling: $R^{2}\left(c_{\star}+c\right)=c_{\star}+\lambda c+o\left(|c|^{1+\varepsilon}\right)$ with $\lambda>1$ for "certain" c

Cor. Scaling: $R^{2}\left(c_{\star}+c\right)=c_{\star}+\lambda c+o\left(|c|^{1+\varepsilon}\right)$ with $\lambda>1$ for "certain" c

Cor. Scaling: $\boldsymbol{R}^{2}\left(c_{\star}+c\right)=c_{\star}+\lambda c+o\left(|c|^{1+\varepsilon}\right)$ with $\lambda>1$ for "certain" c

$\bigcap_{n \geq 0} R_{s}^{-n}(\mathcal{M})=\left\{c_{s}\right\}$ is a singleton - MLC at c_{s}

