On the problem of local connectivity of the Mandelbrot set

Dzmitry Dudko

Stony Brook University 1 March 2018

$$f_c(z) = z^2 + c$$

orb(z) = (z, f_c(z), f_c \circ f_c(z), f_c \circ f_c \circ f_c(z), ...)
The Julia set $J_c = \partial \{z \mid orb(z) \text{ is bounded} \}$

$$f_c(z) = z^2 + c$$

orb(z) = (z, f_c(z), f_c \circ f_c(z), f_c \circ f_c \circ f_c(z), ...)
The Julia set $J_c = \partial \{z \mid orb(z) \text{ is bounded} \}$

The Julia set $J_c = \partial \{z \mid orb(z) \text{ is bounded} \}$ is either connected, or a Cantor set

The Mandelbrot set $\mathcal{M} = \{ c \mid J_c \text{ is connected} \}$

dim = 1 parameter spaces

dim = 1 parameter spaces

dim = 1 parameter spaces

Douady, Hubbard: \mathcal{M} has ∞ -many copies of itself every copy is canonically homeomorphic to \mathcal{M}

Douady, Hubbard: \mathcal{M} has ∞ -many copies of itself every copy is canonically homeomorphic to \mathcal{M}

Douady, Hubbard: \mathcal{M} has ∞ -many copies of itself every copy is canonically homeomorphic to \mathcal{M}

The MLC-conjecture: the Mandelbrot set is locally connected MLC iff $\exists \pi : \overline{\mathbb{D}^1} \to \mathcal{M}$ continuous pinched disk model:

Yoccoz: MLC holds at "non- ∞ renormalizable" parameters Cor: MLC iff canonical homeomorphisms are "expanding"; f.e.

if $\bigcap_{n\geq 0} \mathbf{R}^{-n}(\mathcal{M}) = \{c_s\}$ is a singleton, then MLC holds at c_s

Lyubich; Graczyk and Świątek: ℝ-version of MLC:

 $\bigcap_{n>0} \mathbf{R}^{-n}(\mathcal{M}) \cap \mathbb{R} = \{c_s\}$ is a singleton if $\mathcal{M}_s \cap \mathbb{R} \neq \emptyset$

Kahn, Lyubich: $\forall \varepsilon > 0, \mathbf{R} : \mathcal{M}_s \to \mathcal{M}$ are simultaneously expanding if \mathcal{M}_s are ε -away from the molecule (primitive case):

 $\bigcap_{n>0} \mathbf{R}^{-n}(\mathcal{M}) = \{c_s\}$ is a singleton – MLC at c_s

Kahn, Lyubich: $\forall \varepsilon > 0, \mathbf{R} : \mathcal{M}_s \to \mathcal{M}$ are simultaneously expanding if \mathcal{M}_s are ε -away from the molecule (primitive case):

Kahn, Lyubich: $\forall \varepsilon > 0, \mathbf{R} : \mathcal{M}_s \to \mathcal{M}$ are simultaneously expanding if \mathcal{M}_s are ε -away from the molecule (primitive case):

Thm (Lyubich and DD) \mathbf{R} : $\mathcal{M}_s \to \mathcal{M}$ is expanding for some satellite copies \mathcal{M}_s on the molecule (first examples):

 $\bigcap_{n\geq 0} \mathbf{R}^{-n}(\mathcal{M}) = \{c_s\}$ is a singleton – MLC at c_s

Feigenbaum scaling is universal:

Feigenbaum scaling is universal:

Feigenbaum scaling is universal:

Feigenbaum scaling is universal:

Feigenbaum scaling is universal:

 $\mathcal{R}f$ is the first return map $\mathcal{R}: {Maps}/_{\sim} \dashrightarrow {Maps}/_{\sim}$ Canonical homeomorphism:

Decomposition \mathbf{R} = holonomy $\circ \mathcal{R}$

Decomposition \mathbf{R} = holonomy $\circ \mathcal{R}$

Sullivan, McMullen, Lyubich: hyperbolicity of \mathcal{R} + holonomy prove universality

the molecule map (3-to-1 continuous)

The molecule map and its model – conjugate if MLC

not a branched covering!

Renormalizable pacman

Renormalizable pacman:

Pacman renormalization:

Renormalization of the Rabbit

Renormalization of the Rabbit

Renormalization of the Rabbit

Branner – Douady surgery

analytic operator

Rem. Periodic points were constructed in 1990s by McMullen for a "cylinder" renormalization

Inou, Shishikura: hyperbolicity for the cylinder renormalization for high type parameters (perturbative methods)

Inou, Shishikura: hyperbolicity for the cylinder renormalization for high type parameters (perturbative methods)

Inou, Shishikura: hyperbolicity for the cylinder renormalization for high type parameters (perturbative methods)

Unstable manifold \approx zoomed Mandelbrot set can be studied as a transcendental family

Unstable manifold \approx zoomed Mandelbrot set can be studied as a transcendental family

Construct a local leaf

Construct a local leaf

Construct a local leaf, run \mathcal{R}

Construct a local leaf, run \mathcal{R}

Cor. Scaling: $\mathbf{R}^2(c_* + c) = c_* + \lambda c + o(|c|^{1+\varepsilon})$ with $\lambda > 1$ for "certain" c

Cor. Scaling: $\mathbf{R}^2(c_{\star} + c) = c_{\star} + \lambda c + o(|c|^{1+\varepsilon})$ with $\lambda > 1$ for "certain" c

Cor. Scaling: $\mathbf{R}^2(\mathbf{c}_{\star} + \mathbf{c}) = \mathbf{c}_{\star} + \lambda \mathbf{c} + \mathbf{o}(|\mathbf{c}|^{1+\varepsilon})$ with $\lambda > 1$ for "certain" \mathbf{c}

 $\bigcap_{n\geq 0} \mathbf{R}_s^{-n}(\mathcal{M}) = \{c_s\}$ is a singleton – MLC at c_s

