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Curvature

Fundamental theme in Riemannian geometry:

Question (Local to global)

How does the curvature of a Riemannian manifold influence the
global geometry & topology of the manifold?
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Scalar curvature

Today:

Question (Local to global for scalar curvature)

How does the scalar curvature of a Riemannian manifold influence
the global geometry & topology of the manifold?

Scalar curvature is the weakest of the classical curvature invariants.
It is hard for it to “transmit information” between different points
of the manifold (e.g., compared to Ricci curvature).

Scalar curvature is trace of Ricci curvature, so think of trM ≥ 0 vs
M ≥ 0 for an n × n matrix M.
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Scalar curvature & volume

Scalar curvature R measures the volume of small geodesic balls:

|Br (p)| = ωnr
n

(
1− R(p)

6(n + 1)
r2 + O(r3)

)
as r → 0.

By contrast, Ricci curvature gives control on geodesic balls of all
size. For example, Ric ≥ 0 implies that

|Br (p)| ≤ ωnr
n

for all r > 0.
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The isoperimetric problem

Recall: A region Ω ⊂ M is isoperimetric if it has the least surface
area among all regions enclosing a fixed volume.

E.g.: In R3, Br (p) is isoperimetric for any p and r > 0.

The list of situations in which the isoperimetric regions are “well”
understood is very short, e.g.: simply connected space forms, some
quotients and products of space forms, certain rotationally
symmetric manifolds.
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Small isoperimetric regions

We do understand the isoperimetric problem for small volumes in
any manifold, and how it relates to scalar curvature. (Druet,
Nardulli, Morgan–Johnson, Ye, Pacard–Xu, and others.)

The above result is one of the only such result on isoperimetric
regions in manifolds which are not “special,” i.e., it applies to
manifolds with no symmetries.
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Small isoperimetric regions

small isoperimetric region
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Small isoperimetric regions

smaller isoperimetric region

Otis Chodosh Global geometry of scalar curvature



Small isoperimetric regions

tiny isoperimetric region
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Small isoperimetric regions

minuscule isoperimetric region
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Small isoperimetric regions

minuscule isoperimetric region

rescaled picture

metric and region
close to Euclidean
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Small isoperimetric regions

minuscule isoperimetric region

rescaled picture

metric and region
close to Euclidean

Ω
p

|∂Ω| = nω
1
n
n |Ω|

n−1
n (1− cnRg (p)|Ω|

2
n + . . . )
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Small isoperimetric regions

minuscule isoperimetric region

rescaled picture

metric and region
close to Euclidean

Ω
p

|∂Ω| = nω
1
n
n |Ω|

n−1
n︸ ︷︷ ︸

“Rn”

(1− cnRg (p)|Ω|
2
n + . . . )︸ ︷︷ ︸

“g ,p”

Otis Chodosh Global geometry of scalar curvature



Scalar curvature & the isoperimetric problem

The expansion,

|∂Ω| = nω
1
n
n |Ω|

n−1
n (1− cnRg (p)|Ω|

2
n + . . . )

implies:

Theorem (Druet, Nardulli, Morgan–Johnson)

Small isoperimetric regions are close to small geodesic balls,
centered at points of maximal scalar curvature.
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Scalar curvature & the isoperimetric problem in the large

What about the isoperimetric problem for other (large) volumes?

In general, scalar curvature gives no information about the
isoperimetric problem other than V → 0 regime.
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Scalar curvature & the isoperimetric problem in the large

Key for small volumes: metric is nearly flat ⇒ isoperimetric region
is nearly round.

For large volumes: natural assumption is that the metric becomes
Euclidean at large scales, i.e. is asymptotically flat.

Such metrics also arise naturally in General Relativity as initial data
for the Einstein equations describing an isolated gravitating system.
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Scalar curvature & the AF isoperimetric problem

Theorem (C.–Eichmair–Shi–Yu)

Suppose that (M3, g) is asymptotically flat and has non-negative
scalar curvature. Then, either (M3, g) is flat space (R3, gR3) or for
V sufficiently large, there exists an unique isoperimetric region ΩV

containing volume V .

Note: no uniqueness for R3!

Prior work by Bray, Eichmair–Metzger with more asymptotic
symmetry.
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Scalar curvature & the AF isoperimetric problem

Like small isoperimetric problem, coarse information by rescaling.

But, the asymptotically flatness dictates an essentially unique
center of rescaling, which may not be compatible with the
isoperimetric regions!

B1(ξ)

ξ ∂Ω̃k

×
non-smooth convergence at center of rescaling!!
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Scalar curvature & the AF isoperimetric problem

Analogy: Assume that f (0) = f ′(0) = 0

λ−1f (λx)
λ→0−−−→ 0

Get strong information about f near 0.

On the other hand, assume that f (x) = o(|x |−1) at infinity, so

λ−1f (λx)
λ→∞−−−→ 0

but the convergence is in, say, C 0
loc(R \ {0}). Have no information

about f in compact region!
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Scalar curvature & the AF isoperimetric problem

New approach: combine Huisken’s monotonicity of isoperimetric
defect along mean curvature flow with analysis of Willmore
energy/Hawking mass (flux integral, relating asymptotics of metric
to “mass” and thus scalar curvature) of flowing surfaces.

× ×

Red region: a priori bound on “Hawking mass” coming from
inverse mean curvature flow (Huisken–Ilmanen). Blue region: off
center, so “Hawking mass” is very small ⇒ behaves like region in
R3.
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Limits of large isoperimetric regions

Most extreme example of poor convergence of rescaled
isoperimetric regions: Ωj isoperimetric in asymptotically flat
3-manifold with |Ωj | → ∞ but bounded inner radius, i.e.

lim sup
j→∞

d(p,Ωj) <∞.

Can show (Eichmair–Metzger) that a subsequence of ∂Ωj limits to
an area-minimizing surface. Thus: no area-minimizing surfaces ⇒
inner radius tends to infinity.

Compare to R3:

isoperimetric regionarea minimizing plane
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Area minimizing surfaces & scalar curvature

Theorem (C.–Eichmair)

Suppose that (M3, g) is asymptotically flat with non-negative
scalar curvature and contains an unbounded area-minimizing
boundary. Then, (M3, g) is flat (R3, gR3).

Builds on work of Anderson–Rodriguez and Liu.
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Area minimizing surfaces & scalar curvature

First difficulty: non-negative scalar curvature vs. the distance
function. Compare to:

Ric ≥ 0⇒ ∆r(x) ≤ n − 1

r(x)

for r(x) = distg (x , p).

Second difficulty: non-compactness of surface makes it hard to
argue using its “surface area,” which is a quantity that is
“controlled” by scalar curvature in 3-manifolds (Schoen–Yau).
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