The Geometry and Arithmetic of Sphere Packings

 Alex Kontorovich

 Alex Kontorovich}

Rutgers

Apollonian Circle Packings

Apollonian Circle Packings

Thm: (Apollonius, ~200 BCE)

Apollonian Circle Packings

Thm: (Apollonius, ~200 BCE)

Apollonian Circle Packings

Thm: (Apollonius, ~200 BCE)

Apollonian Circle Packings

Thm: (Apollonius, ~200 BCE)
(Proof by Viète, ~ 1600)

Obs: (Leibniz, ~1700)

Apollonian Circle Packings

Thm: (Apollonius, ~200 BCE)
(Proof by Viète, ~1600)

Obs: (Leibniz, ~1700)

Apollonian Circle Packings

Thm: (Apollonius, ~200 BCE)

Apollonian Circle Packings

Thm: (Apollonius, $\sim 200 \mathrm{BCE}$)
(Proof by Viète, ~ 1600)

Obs: (Leibniz, ~1700)

Apollonian Circle Packings

Thm: (Apollonius, $\sim 200 \mathrm{BCE}$)
(Proof by Viète, ~ 1600)

Obs: (Leibniz, ~1700)

(Called "Apollonian" ~1950s)
First Question: What is the typical circle size?

Apollonian Circle Packings

Thm: (Apollonius, $\sim 200 \mathrm{BCE}$)
(Proof by Viète, ~ 1600)

Obs: (Leibniz, ~1700)

(Called "Apollonian" ~1950s)
First Question: What is the typical circle size?

$$
\mathcal{N}(X):=\#\{C \in \mathcal{P}: r(C)>1 / X\}
$$

Apollonian Circle Packings

Thm: (Apollonius, $\sim 200 \mathrm{BCE}$)
(Proof by Viète, ~ 1600)

Obs: (Leibniz, ~1700)

First Question: What is the typical circle size?

$$
\mathcal{N}(X):=\#\{C \in \mathcal{P}: r(C)>1 / X\}
$$

Set $\kappa=1 / r$

Apollonian Circle Packings

Thm: (Apollonius, $\sim 200 \mathrm{BCE}$)
(Proof by Viète, ~ 1600)

Obs: (Leibniz, ~1700)

(Called "Apollonian" ~1950s)
First Question: What is the typical circle size?

$$
\mathcal{N}(X):=\#\{C \in \mathcal{P}: r(C)>1 / X\}
$$

Set $\kappa=1 / r$, so that

$$
\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\}
$$

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$
$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

$$
\begin{array}{r}
y=x^{2} / y=\mathcal{N}(x) \\
y=x
\end{array}
$$

$$
\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}
$$

$$
\begin{array}{ll}
y=x^{2}
\end{array} \quad \begin{aligned}
& \text { Thm: }(\mathrm{K}-\mathrm{Oh}, ' 11) \\
& \mathcal{N}(X) \sim c \cdot X^{1.3057 \ldots}
\end{aligned}
$$

$$
\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}
$$

$$
\begin{array}{r}
y=x^{2} \quad \begin{array}{l}
\text { Thm: }(\text { K-Oh, '11 }) \\
\mathcal{N}(X) \sim c \cdot X^{1.3057 \ldots} \\
\text { Here } 1.3057 \ldots=\operatorname{H.dim}(\overline{\mathcal{P}})
\end{array}
\end{array}
$$

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

$y=x^{2} / y=\mathcal{N}(x) \quad$| Thm: $\left(\mathrm{K}-\mathrm{Oh},{ }^{\prime} 11\right)$ |
| :--- |
| $\mathcal{N}(X) \sim c \cdot X^{1.3057 \ldots}$ |

$$
\text { Here } 1.3057 \ldots=\operatorname{H} . \operatorname{dim}(\overline{\mathcal{P}})
$$

Sketch:

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

Here $1.3057 \ldots=\operatorname{H} . \operatorname{dim}(\overline{\mathcal{P}})$
Sketch:

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

$y=x^{2} / y=\mathcal{N}(x) \quad$| Thm: $($ K-Oh, '11 $)$ |
| :--- |
| $\mathcal{N}(X) \sim c \cdot X^{1.3057 \ldots}$ |

Here 1.3057... $=\mathrm{H} . \operatorname{dim}(\overline{\mathcal{P}})$
Sketch:

$$
\Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle
$$

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

Here $1.3057 \ldots=\operatorname{H.dim}(\overline{\mathcal{P}})$
Sketch:

$$
\begin{aligned}
\Gamma=\left\langle\widetilde{C}_{1}\right. & \left., \ldots, \widetilde{C}_{4}\right\rangle \\
& <\operatorname{Isom}\left(\mathbb{H}^{3}\right)
\end{aligned}
$$

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

Here 1.3057... $=\operatorname{H} \cdot \operatorname{dim}(\overline{\mathcal{P}})$
Sketch:

$$
\begin{aligned}
\Gamma=\left\langle\widetilde{C}_{1}\right. & \left., \ldots, \widetilde{C}_{4}\right\rangle \\
& <\operatorname{Isom}\left(\mathbb{H}^{3}\right)
\end{aligned}
$$

$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

Here 1.3057... $=\operatorname{H} \cdot \operatorname{dim}(\overline{\mathcal{P}})$
Sketch:

$$
\begin{aligned}
\Gamma=\left\langle\widetilde{C}_{1}\right. & \left., \ldots, \widetilde{C}_{4}\right\rangle \\
& <\operatorname{Isom}\left(\mathbb{H}^{3}\right)
\end{aligned}
$$

limit set of Γ
$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

Here 1.3057... $=\operatorname{H} \cdot \operatorname{dim}(\overline{\mathcal{P}})$
Sketch:

$$
\begin{aligned}
& \Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle \\
&<\operatorname{Isom}\left(\mathbb{H}^{3}\right)
\end{aligned}
$$

limit set of $\Gamma=\overline{\mathcal{P}}$
$\mathcal{N}(X):=\#\{C \in \mathcal{P}: \kappa(C)<X\}$

Here 1.3057... $=\operatorname{H} \cdot \operatorname{dim}(\overline{\mathcal{P}})$
Sketch:

$$
\begin{aligned}
\Gamma=\left\langle\widetilde{C}_{1}\right. & \left., \ldots, \widetilde{C}_{4}\right\rangle \\
& <\operatorname{Isom}\left(\mathbb{H}^{3}\right)
\end{aligned}
$$

limit set of $\Gamma=\overline{\mathcal{P}}$

Key: Equidistribution of low-lying horospheres

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Note: $\ell\left(H_{y}\right)=1 / y \rightarrow \infty$.

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Note: $\ell\left(H_{y}\right)=1 / y \rightarrow \infty$.
Let $\varphi: \mathrm{SL}_{2} \backslash \mathbb{H} \rightarrow \mathbb{C}$ be a compactly supported test function.

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Note: $\ell\left(H_{y}\right)=1 / y \rightarrow \infty$.
Let $\varphi: \mathrm{SL}_{2} \backslash \mathbb{H} \rightarrow \mathbb{C}$ be a compactly supported test function.

Thm (Sarnak '81):

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Note: $\ell\left(H_{y}\right)=1 / y \rightarrow \infty$.
Let $\varphi: \mathrm{SL}_{2} \backslash \mathbb{H} \rightarrow \mathbb{C}$ be a compactly supported test function.

Thm (Sarnak '81):
$\frac{1}{H_{y}} \int_{H_{y}} \varphi$

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Note: $\ell\left(H_{y}\right)=1 / y \rightarrow \infty$.
Let $\varphi: \mathrm{SL}_{2} \backslash \mathbb{H} \rightarrow \mathbb{C}$ be a compactly supported test function.

Thm (Sarnak '81):
$\frac{1}{H_{y}} \int_{H_{y}} \varphi$
\rightarrow
$\frac{1}{\operatorname{vol}} \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}} \varphi \frac{d x d y}{y^{2}}$

Classical: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

Let $H_{y}=$ horocycle at height $y \rightarrow 0$.

Note: $\ell\left(H_{y}\right)=1 / y \rightarrow \infty$.
Let $\varphi: \mathrm{SL}_{2} \backslash \mathbb{H} \rightarrow \mathbb{C}$ be a compactly supported test function.

Chm (Sarnak '81):
$\frac{1}{H_{y}} \int_{H_{y}} \varphi$
\rightarrow
$\frac{1}{\operatorname{vol}} \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}} \varphi \frac{d x d y}{y^{2}}$
Analogue of this to our setting is used to prove $\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$

Leibniz:

Leibniz:

Soddy (1936):

Leibniz:

Soddy (1936):
Study the "bends" $\kappa=1 / r$!

Leibniz:

Soddy (1936):
Study the "bends" $\kappa=1 / r$!

Leibniz:

Soddy (1936):
Study the "bends" $\kappa=1 / r$!

Leibniz:

Soddy (1936):
Study the "bends" $\kappa=1 / r$!

Leibniz:

Soddy (1936):
Study the "bends" $\kappa=1 / r$!

Leibniz:

Soddy (1936):
Study the "bends" $\kappa=1 / r$!

Integral Apollonian Circle Packings

Integral Apollonian Circle Packings

Integral Apollonian Circle Packings

How could this be?

Integral Apollonian Circle Packings

How could this be? Soddy had rediscovered: Thm: (Descartes ~1650)

Integral Apollonian Circle Packings

$$
-10
$$

How could this be? Soddy had rediscovered: Thm: (Descartes ~1650)
If four circles C_{1}, \ldots, C_{4} are mutually tangent,

Integral Apollonian Circle Packings

-10

How could this be? Soddy had rediscovered: Thm: (Descartes ~1650)
If four circles C_{1}, \ldots, C_{4} are mutually tangent,

Integral Apollonian Circle Packings

-10

How could this be? Soddy had rediscovered: Thm: (Descartes ~1650)
If four circles C_{1}, \ldots, C_{4} are mutually tangent,

C_{3}

$$
\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}
$$

Four circles to the kissing come.
The smaller are the bender.
The bend is just the inverse of The distance from the center.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
F. Soddy,

Nature (1936).

Since zero bend's a dead straight line And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

$$
\begin{aligned}
& \text { Integral Apollonian Circle Packings } \\
& \kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}-10 \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}$,

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}.

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)

Integral Apollonian Circle Packings

$$
\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}-10
$$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)

Integral Apollonian Circle Packings

$$
\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}-10
$$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$.

Integral Apollonian Circle Packings

 $\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}{ }_{-10}$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$. (Viète involution)

Integral Apollonian Circle Packings

$\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}{ }_{-10}$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$. (Viète involution) $\Longrightarrow \kappa_{4}^{\prime}$ is a \mathbb{Z}-linear combination of previous curvatures.

Integral Apollonian Circle Packings

$\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}{ }_{-10}$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$. (Viète involution) $\Longrightarrow \kappa_{4}^{\prime}$ is a \mathbb{Z}-linear combination of previous curvatures.

But every circle $C \in \mathcal{P}$ is obtained from the previous ones by Viète moves.

Integral Apollonian Circle Packings

$\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}{ }_{-10}$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$. (Viète involution) $\Longrightarrow \kappa_{4}^{\prime}$ is a \mathbb{Z}-linear combination of previous curvatures.

But every circle $C \in \mathcal{P}$ is obtained from the previous ones by Viète moves.

Integral Apollonian Circle Packings

$\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}{ }_{-10}$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$. (Viète involution) $\Longrightarrow \kappa_{4}^{\prime}$ is a \mathbb{Z}-linear combination of previous curvatures.

But every circle $C \in \mathcal{P}$ is obtained from the previous ones by Viète moves.
\Longrightarrow (Soddy) If $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$ all integral,

Integral Apollonian Circle Packings

$\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}{ }_{-10}$

Cor: Given $\kappa_{1}, \kappa_{2}, \kappa_{3}, \exists$ two solutions for κ_{4}. (Apollonius!)
Exercise: $\kappa_{4}^{\prime}=2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)-\kappa_{4}$. (Viète involution) $\Longrightarrow \kappa_{4}^{\prime}$ is a \mathbb{Z}-linear combination of previous curvatures.

But every circle $C \in \mathcal{P}$ is obtained from the previous ones by Viète moves.
\Longrightarrow (Soddy) If $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$ all integral, then so are all curvatures!

Integral Apollonian Circle Packings

Integral Apollonian Circle Packings

Integral Apollonian Circle Packings

Integral Apollonian Circle Packings

Every sufficiently large admissible integer arises in \mathcal{K}.

Integral Apollonian Circle Packings

Every sufficiently large admissible integer arises in \mathcal{K}.
Thm: (Bourgain-K, 2014)
Almost all admissible numbers arise.

Integral Apollonian Circle Packings

Every sufficiently large admissible integer arises in \mathcal{K}.
Thm: (Bourgain-K, 2014)
Almost all admissible numbers arise. $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles }[1, X]} \rightarrow 1$.

Integral Apollonian Circle Packings

Every sufficiently large admissible integer arises in \mathcal{K}.
Thm: (Bourgain-K, 2014)
Almost all admissible numbers arise. $\overline{\text { \#admissibles } \cap[1, X]} \rightarrow 1$.
Builds on GLMWY, Sarnak '07, Fuchs '10, Bourgain-Fuchs '11

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap[1, X]} \rightarrow 1$.

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic:

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity \approx

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057}$

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap[1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}$

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap[1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057}$

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise? Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap[1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.
Proof Sketch: Use the Circle Method

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise? Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.
Proof Sketch: Use the Circle Method to prove that the multiplicity is

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise? Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.
Proof Sketch: Use the Circle Method to prove that the multiplicity is on average as large as it should be.

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise? Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.
Proof Sketch: Use the Circle Method to prove that the multiplicity is on average as large as it should be.

Tools: Expander graphs, Bilinear Forms,
Equidistribution in Cosets, Exponential Sums,...

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise? Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.

Proof Sketch: Use the Circle Method to prove that the multiplicity is on average as large as it should be.

Tools: Expander graphs, Bilinear Forms, Equidistribution in Cosets, Exponential Sums,...
(Survey in: K. "From Apollonius to Zaremba" BAMS 2013)

Sketch: $\frac{\# \mathcal{K} \cap[1, X]}{\# \text { admissibles } \cap 1, X]} \rightarrow 1$.

First: Why should every (large) admissible number arise?
Recall
$\mathcal{N}(X)=\#\{C \in \mathcal{P}: \kappa(C)<X\} \sim c \cdot X^{1.3057 \ldots}$
Heuristic: "Typical" admissible $n \asymp X$ arises in \mathcal{K} with multiplicity $\approx X^{1.3057} \times \frac{1}{X}=X^{0.3057} \rightarrow \infty$.

Proof Sketch: Use the Circle Method to prove that the multiplicity is on average as large as it should be.

Tools: Expander graphs, Bilinear Forms, Equidistribution in Cosets, Exponential Sums,...
(Survey in: K. "From Apollonius to Zaremba" BAMS 2013)

All "old" news...

New Q: WHY does any of this exist at all?

New Q: WHY does any of this exist at all?

- Descartes' Theorem: $\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}$

New Q: WHY does any of this exist at all?

- Descartes' Theorem: $\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}$
- Viète moves:

$$
\begin{aligned}
& \Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle \\
&<\operatorname{Isom}\left(\mathbb{H}^{3}\right)
\end{aligned}
$$

New Q: WHY does any of this exist at all?

- Descartes' Theorem: $\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}$
- Viète moves:

$$
\begin{aligned}
& \Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle \\
& \quad<\operatorname{Isom}\left(\mathbb{H}^{3}\right) \\
& \text { - limit set of } \Gamma=\overline{\mathcal{P}}
\end{aligned}
$$

New Q: WHY does any of this exist at all?

- Descartes' Theorem: $\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}$
- Viète moves:

$$
\begin{aligned}
& \Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle \\
& <\operatorname{Isom}\left(\mathbb{H}^{3}\right) \\
& \text { - limit set of } \Gamma=\overline{\mathcal{P}}
\end{aligned}
$$

What is the general setting for this problem?

General Setting

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes)

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1 /$ radius .

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius ${ }^{2}$.)

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius ${ }^{2}$.)

Classifying infinite, dense, integral packings is hopeless.

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius 2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants.

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius 2.)

Classifying infinite, dense, integral packings is hopeless. One can do whatever one wants. Need structure:

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.
Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius ${ }^{2}$.)

Classifying infinite, dense, integral packings is hopeless. One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing \mathcal{P} such that

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.

Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius ${ }^{2}$.)

Classifying infinite, dense, integral packings is hopeless. One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing \mathcal{P} such that $\exists \Gamma<\operatorname{Isom}\left(\mathbb{H}^{n+1}\right)$ discrete, geometrically finite,

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.

Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius ${ }^{2}$.)

Classifying infinite, dense, integral packings is hopeless. One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing \mathcal{P} such that $\exists \Gamma<\operatorname{Isom}\left(\mathbb{H}^{n+1}\right)$ discrete, geometrically finite, generated by reflections, with

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.

Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius 2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:
Def: A Γ-packing is an infinite, dense packing \mathcal{P} such that $\exists \Gamma<\operatorname{Isom}\left(\mathbb{H}^{n+1}\right)$ discrete, geometrically finite, generated by reflections, with limit set $=\overline{\mathcal{P}^{\prime}}$.

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.

Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius 2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:
Def: A Γ-packing is an infinite, dense packing \mathcal{P} such that $\exists \Gamma<\operatorname{Isom}\left(\mathbb{H}^{n+1}\right)$ discrete, geometrically finite, generated by reflections, with limit set $=\overline{\mathcal{P}^{\prime}}$. $\left({ }^{\prime}=\right.$ no orientation $)$

General Setting

Def: A packing \mathcal{P} of $\widehat{\mathbb{R}^{n}}:=\mathbb{R}^{n} \cup\{\infty\}$ is a collection of oriented ($n-1$)-spheres (or co-dim-1 planes) with disjoint interiors and connected tangency graph.

Def: A packing \mathcal{P} is dense if any ball in $\widehat{\mathbb{R}^{n}}$ intersects the interior of some sphere in \mathcal{P}.

Def: A packing \mathcal{P} is integral if every sphere in \mathcal{P} has integral "bend" $=1$ /radius. (In higher dim, "curvature" $\asymp 1 /$ radius 2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:
Def: A Γ-packing is an infinite, dense packing \mathcal{P} such that $\exists \Gamma<\operatorname{Isom}\left(\mathbb{H}^{n+1}\right)$ discrete, geometrically finite, generated by reflections, with limit set $=\overline{\mathcal{P}^{\prime}}$. (${ }^{\prime}=$ no orientation $)$
Problem: Classify all integral Γ-packings.

Problem: Classify all integral Γ-packings.

Problem: Classify all integral Γ-packings.
At first looks hopeless.

Problem: Classify all integral Γ-packings.
At first looks hopeless. May not be so!

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and }
$$

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
\Gamma & =\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
\widetilde{\Gamma} & =\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle
\end{aligned}
$$

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
\Gamma & =\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
\widetilde{\Gamma} & =\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron, }
\end{aligned}
$$

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
\Gamma & =\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
\widetilde{\Gamma} & =\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron, }
\end{aligned}
$$

with all dihedral angles $=\pi / 2$.

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
\Gamma & =\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
\widetilde{\Gamma} & =\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron, }
\end{aligned}
$$

with all dihedral angles $=\pi / 2 . \quad \sim \operatorname{SL}_{2}(\mathbb{Z}[i])$.

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
& \Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
& \widetilde{\Gamma}=\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron, }
\end{aligned}
$$

with all dihedral angles $=\pi / 2 . \quad \sim \operatorname{SL}_{2}(\mathbb{Z}[i])$.

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
\Gamma & =\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
\widetilde{\Gamma} & =\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron, }
\end{aligned}
$$

with all dihedral angles $=\pi / 2 . \quad \sim \operatorname{SL}_{2}(\mathbb{Z}[i])$.

Def: The super-packing $\widetilde{\mathcal{P}}$ attached to \mathcal{P} is:

$$
\widetilde{\mathcal{P}}:=\widetilde{\Gamma} \cdot \mathcal{P}
$$

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
\Gamma & =\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
\widetilde{\Gamma} & =\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron, }
\end{aligned}
$$

with all dihedral angles $=\pi / 2 . \quad \sim \operatorname{SL}_{2}(\mathbb{Z}[i])$.

Def: The super-packing $\widetilde{\mathcal{P}}$ attached to \mathcal{P} is:

$$
\widetilde{\mathcal{P}}:=\widetilde{\Gamma} \cdot \mathcal{P}
$$

Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!
Def: To a Γ-packing \mathcal{P}, attach a super-group

$$
\widetilde{\Gamma}:=\langle\Gamma, \mathcal{P}\rangle
$$

E.g. Back to Apollonian:

$$
\begin{aligned}
& \Gamma=\left\langle\widetilde{C}_{1}, \ldots, \widetilde{C}_{4}\right\rangle, \text { and } \\
& \widetilde{\Gamma}=\left\langle\Gamma, C_{1}, \ldots, C_{4}\right\rangle=\text { ideal octahedron },
\end{aligned}
$$

with all dihedral angles $=\pi / 2 . \quad \sim \operatorname{SL}_{2}(\mathbb{Z}[i])$.

Def: The super-packing $\widetilde{\mathcal{P}}$ attached to \mathcal{P} is:

$$
\widetilde{\mathcal{P}}:=\widetilde{\Gamma} \cdot \mathcal{P}
$$

Def: A Γ-packing \mathcal{P} is super-integral if every
bend in $\widetilde{\mathcal{P}}$ is an integer.

Problem: Classify all (super-)integral Γ-packings.

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016)

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral,

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary!

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016) If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016) If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings for which $\widetilde{\Gamma}$ is not arithmetic.

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016) If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings for which $\widetilde{\Gamma}$ is not arithmetic.

If true, SuperPAC would be very useful:

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:) (K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings for which $\widetilde{\Gamma}$ is not arithmetic.

If true, SuperPAC would be very useful: Thm: (Vinberg, Nikulin, Long-Maclahlan-Reid, Agol, Agol-Belilopetsky-StormWhyte)

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:)
(K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings for which $\widetilde{\Gamma}$ is not arithmetic.

If true, SuperPAC would be very useful: Thm: (Vinberg, Nikulin, Long-Maclahlan-Reid, Agol, Agol-Belilopetsky-StormWhyte)

There are only finitely many maximal arithmetic hyperbolic reflection groups!

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:)
(K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings for which $\widetilde{\Gamma}$ is not arithmetic.

If true, SuperPAC would be very useful: Thm: (Vinberg, Nikulin, Long-Maclahlan-Reid, Agol, Agol-Belilopetsky-StormWhyte)

There are only finitely many maximal arithmetic hyperbolic reflection groups! None once $n \geq 30$.

Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:)
(K-Nakamura 2016)
If a Γ-packing \mathcal{P} is super-integral, then $\widetilde{\Gamma}$ is an arithmetic hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of integral (but not super-integral) Γ-packings for which $\widetilde{\Gamma}$ is not arithmetic.

If true, SuperPAC would be very useful: Thm: (Vinberg, Nikulin, Long-Maclahlan-Reid, Agol, Agol-Belilopetsky-StormWhyte)

There are only finitely many maximal arithmetic hyperbolic reflection groups! None once $n \geq 30$.

Corollary: SuperPAC \Longrightarrow essentially only finitely many super-integral Γ-packings.

Examples of (super-)integral Γ-packings

Examples of (super-)integral Γ-packings
Known prior to our work:

Examples of (super-)integral Γ-packings
Known prior to our work:

(Soddy 1936,
"4-simplex")

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, (Guettler-Mallows 2010, "4-simplex") Zhang 2014, "octahedron")

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, "4-simplex") Zhang 2014, "octahedron")

(Dias/Nakamura 2014, "4-orthoplex")

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, "4-simplex") Zhang 2014, "octahedron")

(Dias/Nakamura 2014, "4-orthoplex")

Remark: If $n \geq 3$, even constructing Γ-packings (nevermind integrality) is a long-studied problem (Boyd, Maxwell,...),

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, "4-simplex") Zhang 2014, "octahedron")

(Dias/Nakamura 2014, "4-orthoplex")

Remark: If $n \geq 3$, even constructing Γ-packings (nevermind integrality) is a long-studied problem (Boyd, Maxwell,...), with many applications, e.g. to rational points on K3 surfaces (Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, "4-simplex") Zhang 2014, "octahedron")

(Dias/Nakamura 2014, "4-orthoplex")

Remark: If $n \geq 3$, even constructing Γ-packings (nevermind integrality) is a long-studied problem (Boyd, Maxwell,...), with many applications, e.g. to rational points on K3 surfaces (Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if $n \geq 3$, because the expected multiplicity goes up (K, Dias, Nakamura).

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, "4-simplex") Zhang 2014, "octahedron")

(Dias/Nakamura 2014, "4-orthoplex")

Remark: If $n \geq 3$, even constructing Γ-packings (nevermind integrality) is a long-studied problem (Boyd, Maxwell,...), with many applications, e.g. to rational points on K3 surfaces (Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if $n \geq 3$, because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is $n=2$, i.e., circle packings,

Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936, "4-simplex")

(Guettler-Mallows 2010, Zhang 2014, "octahedron")

(Dias/Nakamura 2014, "4-orthoplex")

Remark: If $n \geq 3$, even constructing Γ-packings (nevermind integrality) is a long-studied problem (Boyd, Maxwell,...), with many applications, e.g. to rational points on K3 surfaces (Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if $n \geq 3$, because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is $n=2$, i.e., circle packings, thanks to Koebe-Andreev-Thurston.

Polyhedral (Circle) Packings

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere.

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.)

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.)
E.g. Cuboctahedron (Archimedean):

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π :

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$,

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$,

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$, giving two sets of clusters, with tangency graphs $\cong \Pi$ and $\widehat{\Pi}$:

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$, giving two sets of clusters, with tangency graphs $\cong \Pi$ and $\widehat{\Pi}$:

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.) E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$, giving two sets of clusters, with tangency graphs $\cong \Pi$ and $\widehat{\Pi}$:

Then $\Gamma:=\langle$ reflections through $\widehat{\Pi}$ cluster \rangle

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.)
E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$, giving two sets of clusters, with tangency graphs $\cong \Pi$ and $\widehat{\Pi}$:

Then $\Gamma:=\langle$ reflections through $\widehat{\Pi}$ cluster \rangle acts on Π cluster giving packing \mathcal{P} modeled on Π.

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.)
E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$, giving two sets of clusters, with tangency graphs $\cong \Pi$ and $\widehat{\Pi}$:

Then $\Gamma:=\langle$ reflections through $\widehat{\Pi}$ cluster \rangle acts on Π cluster giving packing \mathcal{P} modeled on Π.
Def: Π is integral if there exists an integral packing \mathcal{P} modeled on Π.

Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex polyhedron admits a combinatorially equivalent geometrization with a midsphere. (Tangent to all edges.)
E.g. Cuboctahedron (Archimedean):

(KAT)

KAT allows one to attach a Γ-packing to any polyhedron Π : Once geometrized, the midsphere is also that of the dual, $\widehat{\Pi}$, giving two sets of clusters, with tangency graphs $\cong \Pi$ and $\widehat{\Pi}$:

Then $\Gamma:=\langle$ reflections through $\widehat{\Pi}$ cluster \rangle acts on Π cluster giving packing \mathcal{P} modeled on Π.
Def: Π is integral if there exists an integral packing \mathcal{P} modeled on Π.

Problem: Classify these!

Problem: Classify Integral Polyhedra

Problem: Classify Integral Polyhedra
Determining whether a given Π is integral is non-trivial:

Problem: Classify Integral Polyhedra
Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof;

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity:

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic!

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values,

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.

Even then there are difficulties:

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.

Even then there are difficulties:
Thm (K-Nakamura 2016):

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.

Even then there are difficulties:
Thm (K-Nakamura 2016):
(i) Infinitely many polyhedra are integral!

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.
Even then there are difficulties:
Thm (K-Nakamura 2016):
(i) Infinitely many polyhedra are integral!

This is an immediate corollary of:
(ii) Infinitely many distinct polyhedra give rise to the same circle packing \mathcal{P} !

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.
Even then there are difficulties:
Thm (K-Nakamura 2016):
(i) Infinitely many polyhedra are integral!

This is an immediate corollary of:
(ii) Infinitely many distinct polyhedra give rise to the same circle packing \mathcal{P} !

Moreover,
(iii) There are infinitely many non-isomorphic integral circle packings!

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.
Even then there are difficulties:
Thm (K-Nakamura 2016):
(i) Infinitely many polyhedra are integral!

This is an immediate corollary of:
(ii) Infinitely many distinct polyhedra give rise to the same circle packing \mathcal{P} !

Moreover,
(iii) There are infinitely many non-isomorphic integral circle packings!
Proof: Double and glue constructions.

Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:

- KAT is an existence proof; actual geometrization is achieved through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all bends and centers algebraic! After enough decimal places, guess the algebraic values, then verify tangencies rigorously.
Even then there are difficulties:
Thm (K-Nakamura 2016):
(i) Infinitely many polyhedra are integral!

This is an immediate corollary of:
(ii) Infinitely many distinct polyhedra give rise to the same circle packing \mathcal{P} !

Moreover,
(iii) There are infinitely many non-isomorphic integral circle packings!
Proof: Double and glue constructions. (Non-maximal reflection groups, see also Allcock in higher dimensions.)

Theorem (K-Nakamura '16):

Theorem (K-Nakamura '16): The following is a complete list of integral convex polyhedra:

Theorem (K-Nakamura '16): The following is a complete list of integral convex uniform(faces=regular polygons, vertex-transitive) polyhedra:

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic:
uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic: uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic: uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.

Theorem (K-Nakamura '16): The following is a complete list of integral convex uniform(faces=regular polygons, vertex-transitive)
polyhedra:

Platonic:

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.
- Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated Dodec- and Icosahedra, are golden.

Theorem (K-Nakamura '16): The following is a complete list of integral convex uniform(faces=regular polygons, vertex-transitive) polyhedra:

Platonic:

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.
- Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated Dodec- and Icosahedra, are golden.
- Truncated Cube, and Great/Small Rhombicuboctahedra are "silver":
$\mathbb{Z}[\rho]$-integral bends, $\rho=1+\sqrt{2}=[2]$.

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic:
uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.
- Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated Dodec- and Icosahedra, are golden.
- Truncated Cube, and Great/Small Rhombicuboctahedra are "silver":
$\mathbb{Z}[\rho]$-integral bends, $\rho=1+\sqrt{2}=[2]$.
- Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic:
uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.
- Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated Dodec- and Icosahedra, are golden.
- Truncated Cube, and Great/Small Rhombicuboctahedra are "silver":
$\mathbb{Z}[\rho]$-integral bends, $\rho=1+\sqrt{2}=[2]$.
- Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.

Prisms/Antiprisms: • 3-/4-/6-prisms, and 3-/anti-prism.

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic:
uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.
- Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated Dodec- and Icosahedra, are golden.
- Truncated Cube, and Great/Small Rhombicuboctahedra are "silver":
$\mathbb{Z}[\rho]$-integral bends, $\rho=1+\sqrt{2}=[2]$.
- Snub Cube has cubic bends, Snub Dodecahedron has sextic bends. Prisms/Antiprisms: • 3-/4-/6-prisms, and 3-/anti-prism.
Moreover, the dual is integral (golden/silver) iff the polyhed is.

Theorem (K-Nakamura '16): The following is a complete list of
integral convex polyhedra:

Platonic:
uniform(faces=regular polygons, vertex-transitive)

- tetrahedron,
- octahedron (Guettler-Mallows, Zhang),
- cube (Stange).
- Dodec- and icosahedra are "golden": $\mathbb{Z}[\varphi]$-integral bends, $\varphi=\frac{1+\sqrt{5}}{2}$.

Archimedean:

- cubeoctahedron,
- truncated tetrahedron,
- truncated octahedron.
- Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated Dodec- and Icosahedra, are golden.
- Truncated Cube, and Great/Small Rhombicuboctahedra are "silver":
$\mathbb{Z}[\rho]$-integral bends, $\rho=1+\sqrt{2}=[2]$.
- Snub Cube has cubic bends, Snub Dodecahedron has sextic bends. Prisms/Antiprisms: • 3-/4-/6-prisms, and 3-/anti-prism.
Moreover, the dual is integral (golden/silver) iff the polyhed is. So: rhombic dodecahedron, triakis tetrahedron, tetrakis hexahedron (Catalan solids), and 3-/4-/6-bipyramids and 3-trapezohedra are all integral.
E.g.: $\Pi=$ Cuboctahedron
E.g.: $\Pi=$ Cuboctahedron

E.g.: $\Pi=$ Cuboctahedron

Π-cluster:

E.g.: $\Pi=$ Cuboctahedron

Π-cluster:

E.g.: $\Pi=$ Cuboctahedron

Π-cluster:

thm: For all known integral $\mathcal{P}(\Pi), \frac{\#\{\text { bends }<X\}}{\#\{\text { admissible }<X\}} \rightarrow 1$

