Microscopic description of Coulomb-type systems

Sylvia SERFATY

Courant Institute, New York University

Stony Brook math colloquium, October 20, 2016

collaborations: Etienne Sandier Nicolas Rougerie Simona Rota Nodari Mircea Petrache Thomas Leblé

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

The question

 Several problems coming from physics and approximation theory lead to minimizing, with N large

$$H_N(x_1,\ldots,x_N) = \sum_{i\neq j} w(x_i-x_j) + N \sum_{i=1}^N V(x_i) \qquad x_i \in \mathbb{R}^d, d \ge 1$$

interaction potential

$$w(x) = -\log |x|$$
 with $d = 1, 2$ (log gas)

or
$$w(x) = \frac{1}{|x|^s}$$
 max $(0, d-2) \le s < d$ (Riesz)

- ► includes Coulomb: s = d 2 for $d \ge 3$, $w(x) = -\log |x|$ for d = 2.

The question

 Several problems coming from physics and approximation theory lead to minimizing, with N large

$$H_N(x_1,\ldots,x_N) = \sum_{i\neq j} w(x_i-x_j) + N \sum_{i=1}^N V(x_i) \qquad x_i \in \mathbb{R}^d, d \ge 1$$

interaction potential

$$w(x) = -\log |x|$$
 with $d = 1,2$ (log gas)

or
$$w(x) = \frac{1}{|x|^s}$$
 max $(0, d-2) \le s < d$ (Riesz)

- ► includes Coulomb: s = d 2 for $d \ge 3$, $w(x) = -\log |x|$ for d = 2.
- ► V confining potential, sufficiently smooth and growing at infinity

Numerical minimization of H_N for $w(x) = -\log |x|$, $V(x) = |x|^2$ (Gueron-Shafrir), N = 29

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

Motivation 1: Fekete points

► In logarithmic case minimizers are maximizers of

$$\prod_{i< j} |x_i - x_j| \prod_{i=1}^N e^{-N\frac{V}{2}(x_i)}$$

 \rightarrow weighted Fekete sets (approximation theory) Saff-Totik, Rakhmanov-Saff-Zhou

 Fekete points on spheres and other closed manifolds Borodachev-Hardin-Saff, Brauchart-Dragnev-Saff

$$\min_{x_1,...,x_N \in \mathcal{M}} - \sum_{i \neq j} \log |x_i - x_j|$$

Smale's 7th problem originating in computational complexity theory

Riesz s-energy

$$\min_{x_1...x_N \in \mathcal{M}} \sum_{i \neq j} \frac{1}{|x_i - x_j|^s}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Minimal s-energy points on a torus, s = 0, 1, 0.8, 2(from Rob Womersley's webpage) $\exists r \in \mathbb{R}$

Motivation 2: Condensed matter physics

- Vortices in the Ginzburg-Landau model of superconductivity, in superfluids and Bose-Einstein condensates
- Ohta-Kawasaki model of diblock copolymers

Figure: The Meissner effect in superconductors

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Motivation 2: Condensed matter physics

- Vortices in the Ginzburg-Landau model of superconductivity, in superfluids and Bose-Einstein condensates
- Ohta-Kawasaki model of diblock copolymers

Figure: The Meissner effect in superconductors

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Patterns

Figure: Abrikosov lattices in superconductors

Figure: Simulation of the Ohta-Kawasaki energy E - E - DQC

The Ginzburg-Landau model

$$G_{\varepsilon}(\psi, A) = \frac{1}{2} \int_{\Omega} |\nabla_A \psi|^2 + |\operatorname{curl} A - h_{\mathrm{ex}}|^2 + \frac{(1 - |\psi|^2)^2}{2\varepsilon^2}$$

- ► Ω= 2D domain
- A=gauge, ψ = complex-valued "wave function"
- vortices = zeroes of ψ , with winding number
- $h_{\rm ex}$ =intensity of applied field
- ε = material parameter, taken \rightarrow 0.

We showed (Sandier-S) that the minimization of G_{ε} essentially leads to a **Coulomb interaction between the vortices**, acting as quantized charges, like H_N for d = 2.

Cf. Bethuel-Brezis-Hélein in simplified Ginzburg-Landau functional (with fixed bounded number of vortices).

Motivation 3: Statistical mechanics

With temperature: Gibbs measure

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_N)=\frac{1}{Z_{n,\beta}}e^{-\frac{\beta}{2}H_N(x_1,\ldots,x_N)}dx_1\ldots dx_N \qquad x_i\in\mathbb{R}^d$$

 $Z_{n,\beta}$ partition function

▶ $d = 1, 2, w = -\log |x|$:

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_N) = \frac{1}{Z_{n,\beta}} \Big(\prod_{i< j} |x_i-x_j|\Big)^{\beta} e^{-\frac{N\beta}{2}\sum_{i=1}^N V(x_i)} dx_1 \dots dx_N$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\beta = 2 \rightsquigarrow$ determinantal processes

Motivation 3: Statistical mechanics

With temperature: Gibbs measure

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_N)=\frac{1}{Z_{n,\beta}}e^{-\frac{\beta}{2}H_N(x_1,\ldots,x_N)}dx_1\ldots dx_N \qquad x_i\in\mathbb{R}^d$$

 $Z_{n,\beta}$ partition function

•
$$d = 1, 2, w = -\log |x|$$
:

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_N)=\frac{1}{Z_{n,\beta}}\Big(\prod_{i< j}|x_i-x_j|\Big)^{\beta}e^{-\frac{N\beta}{2}\sum_{i=1}^N V(x_i)}dx_1\ldots dx_N$$

 $\beta = 2 \rightsquigarrow$ determinantal processes

Corresponds to **random matrix models** (first noticed by Wigner, Dyson):

- GUE (= law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries)
 ↔ d = 1, β = 2, V(x) = x²/2.
- ► **GOE** (real symmetric matrices with Gaussian i.i.d. entries) $\leftrightarrow d = 1, \beta = 1, V(x) = x^2/2.$
- Ginibre ensemble (matrices with complex Gaussian i.i.d. entries)

 $\leftrightarrow d = 2, \ \beta = 2, \ V(x) = |x|^2.$

Also connection with **"two-component plasma"**, **XY model**, **sine-Gordon model** and **Kosterlitz-Thouless** phase transition.

The leading order to min H_N (or "mean field limit")

► Assume $V \to \infty$ at ∞ (faster than $\log |x|$ in the log cases). For (x_1, \ldots, x_N) minimizing

$$H_N = \sum_{i \neq j} w(x_i - x_j) + N \sum_{i=1}^N V(x_i)$$

one has (Choquet)

$$\lim_{N\to\infty}\frac{\sum_{i=1}^N\delta_{x_i}}{N}=\mu_V\qquad\lim_{N\to\infty}\frac{\min H_N}{N^2}=\mathcal{E}(\mu_V)$$

where μ_V is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x-y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

► E has a unique minimizer µ_V among probability measures, called the *equilibrium measure* (potential theory) Frostman 30's

- Denote Σ = Supp(μ_V). We assume Σ is compact with C¹ boundary and if d ≥ 2 that μ_V has a density which is C^{0,β}(Σ), bounded above, and behaves like c dist(x, Σ)^α for some α ≥ 0 near ∂Σ.
- ► Example: $V(x) = |x|^2$, Coulomb case, then $\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).

► Example d = 1, $w = -\log |x|$, $V(x) = x^2$ then $\mu_V = \frac{1}{2\pi}\sqrt{4 - x^2}\mathbb{1}_{|x|<2}$ (semi-circle law) A 2D log gas for $V(x) = |x|^2$

Figure: $\beta = 400$ and $\beta = 5$

Leading order LDP

Theorem

The push-forward of $\mathbb{P}_{n,\beta}$ by $(x_1, \ldots, x_N) \mapsto \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ satisfies a Large Deviation Principle at speed N^2 and good rate function

$$\frac{\beta}{2}(\mathcal{E}-\mathcal{E}(\mu_V)).$$

In other words

$$\mathbb{P}_{n,\beta}\left(\frac{1}{N}\sum_{i=1}^N \delta_{x_i} \in A\right) \simeq e^{-\beta N^2(\inf_A \mathcal{E} - \min \mathcal{E}))}.$$

→ the Gibbs measure concentrates near μ_V Petz-Hiai, Ben Arous - Guionnet, Ben Arous - Zeitouni, Chafai-Gozlan-Zitt...

Questions

Fluctuations

In what sense does $\frac{1}{N} \sum_{i=1}^{N} \delta_{x_i} \approx \mu_V$?

- At small scales $(O(1) \rightarrow O(N^{-1/d+\varepsilon}))$?
- Deviations bounds?
- Central limit theorem?

Microscopic behavior

Zoom into the system by $N^{1/d} \rightarrow$ infinite point configuration.

What does it look like? What quantities can describe the point configurations?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• How does the picture depend on β ? On V?

Blow-up procedure

- blow-up the configurations at scale $(\mu_V(x)N)^{1/d}$
- ► define interaction energy W for infinite configurations of points in whole space
- ► the total energy is the integral or average of W over all blow-up centers in Σ.

nac

The energy method: expanding the Hamiltonian

Explicit splitting formula

$$\sum_{i \neq j} w(x_i - x_j) = \iint_{\triangle^c} w(x - y) (\sum_i \delta_{x_i})(x) (\sum_i \delta_{x_i})(y)$$
$$= \int w * (N\mu_V) (N\mu_V) + \int w * (\sum_i \delta_{x_i} - N\mu_V) (\sum_i \delta_{x_i} - N\mu_V) + \text{cross term}$$

compute the energy via the potential

$$h_{N} = w * \left(\sum_{i} \delta_{x_{i}} - N \mu_{V} \right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The renormalized energy

Sandier-S, Rougerie-S, Petrache-S At the limit $N \rightarrow \infty$ and after blow-up, in Coulomb cases

$$-\Delta h = C - 1$$
 $C = \sum_{p \in C} \delta_p$

$$\mathbb{W}(\mathcal{C}) := \liminf_{R o \infty} rac{1}{R^d} \int_{\mathcal{K}_R} |
abla h|^2$$

Roughly

$$\mathbb{W}(\mathcal{C}) \simeq \liminf_{R \to \infty} \frac{1}{R^d} \left[\iint_{K_R \times K_R \setminus \bigtriangleup} w(x - y) \left(d\mathcal{C}(x) - dx \right) \left(d\mathcal{C}(y) - dy \right) \right]$$

Borodin-S, Leblé

Main result on the energy

Given a configuration (x₁,..., x_N), we examine the blow-up point configurations {(μ_V(x)N)^{1/d}(x_i - x)} and their infinite limits C. Averaging near the blow-up center x yields a "point process" P^x = probability law on infinite point configurations. P = "tagged point process", probability on Σ × configs. The limits will all be stationary. We define

$$\overline{\mathbb{W}}(P) := \int_{\Sigma} \int \mathbb{W}(\mathcal{C}) dP^{\times}(\mathcal{C}) dx$$

The main result is

$$H_N(x_1,\ldots,x_N) \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + N^{1+s/d} \overline{\mathbb{W}}(P)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sandier-S, Rougerie-S, Petrache-S

Main result on the energy

Given a configuration (x₁,..., x_N), we examine the blow-up point configurations {(μ_V(x)N)^{1/d}(x_i - x)} and their infinite limits C. Averaging near the blow-up center x yields a "point process" P^x = probability law on infinite point configurations. P = "tagged point process", probability on Σ × configs. The limits will all be stationary. We define

$$\overline{\mathbb{W}}(P) := \int_{\Sigma} \int \mathbb{W}(\mathcal{C}) dP^{\times}(\mathcal{C}) dx$$

The main result is

$$H_N(x_1,\ldots,x_N) \sim N^2 \mathcal{E}(\mu_V) - rac{N}{d} \log N + N^{1+s/d} \overline{\mathbb{W}}(P)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sandier-S, Rougerie-S, Petrache-S

- Consequently, if (x₁,..., x_N) is a minimizer of H_N, after blow-up at scale (μ_V(x)N)^{1/d} around a point x ∈ Σ, for a.e. x ∈ Σ, the limiting infinite configuration as N → ∞ minimizes W + next order expansion of the minimal energy.
- ► For minimizers, points are separated by C (N||µ_V||∞)^{1/d} and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S
- Let (ψ_ε, A_ε) minimize the Ginzburg-Landau energy G_ε. In the suitable regime of (ε, h_{ex}), after blow-up at scale √h_{ex} near x in the sample, the limit as ε → 0 of the point vortices is an infinite point configuration which for a.e. x, minimizes W Sandier-S

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Similar result for the "Ohta-Kawasaki model" of diblock copolymers Goldman-Muratov-S.

Partial minimization results

- ► In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z ("clock distribution").
- In dimension d = 2, the minimum of W over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice (modulo rotations).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Partial minimization results

- In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z ("clock distribution").
- ► In dimension d = 2, the minimum of W over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice (modulo rotations).

The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50's)

For s > 2, the Epstein zeta function of a lattice Λ in \mathbb{R}^2 :

$$\zeta(s) = \sum_{oldsymbol{p} \in \Lambda ackslash \{0\}} rac{1}{|oldsymbol{p}|^s}$$

is uniquely minimized among lattices of volume one, by the triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for dimensions 8 and 24 (E_8 and Leech lattices) In dimension 3, does the BCC (body centered cubic) lattice play this role?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50's)

For s > 2, the Epstein zeta function of a lattice Λ in \mathbb{R}^2 :

$$\zeta(s) = \sum_{p \in \Lambda \setminus \{0\}} \frac{1}{|p|^s}$$

is uniquely minimized among lattices of volume one, by the triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for dimensions 8 and 24 (E_8 and Leech lattices) In dimension 3, does the BCC (body centered cubic) lattice play this role?

Conjecture

In dimension 2, the triangular lattice is a global minimizer of \mathbb{W} .

- this conjecture was made in the context of vortices in the GL model, which form triangular Abrikosov lattices
- ▶ Bétermin-Sandier show that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order *n* term in the expansion of the minimal logarithmic energy on S².

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_N)=\frac{1}{Z_{n,\beta}}e^{-\frac{\beta}{2}N^{-\frac{s}{d}}H_N(x_1,\ldots,x_N)}dx_1\ldots dx_N \qquad x_i\in\mathbb{R}^d$$

 insert next-order expansion of H_N and combine it with an estimate for the volume in phase-space occupied by a neighborhood of a given limiting tagged point process P

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Theorem (Leblé-S, '15)

We have a Large Deviation Principle at speed N with good rate function $\beta(\mathcal{F}_{\beta} - \inf \mathcal{F}_{\beta})$, i.e.

$$\mathbb{P}_{n,\beta}(P) \simeq \exp\left(-\beta N\left(\mathcal{F}_{\beta}(P) - \inf \mathcal{F}_{\beta}\right)\right)$$

 \rightsquigarrow the Gibbs measure concentrates on minimizers of \mathcal{F}_{β} . Here,

$$\mathcal{F}_{\beta}(P) := rac{1}{2}\overline{\mathbb{W}}(P) + rac{1}{\beta}\int_{\Sigma} \operatorname{ent}[P^{x}|\Pi] dx,$$

 $\operatorname{ent}[P|\Pi] := \lim_{R \to \infty} \frac{1}{|K_R|} \operatorname{Ent}(P_{K_R}|\Pi_{K_R})$ specific relative entropy

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and Π is the Poisson point process of intensity 1.

Interpretation

Three regimes

- $\beta \gg 1$ crystallization expected
- $\beta \ll 1$ entropy dominates \rightsquigarrow Poisson process
- $\beta \propto 1$ intermediate, no crystallization expected
- In 1D log case the limiting process is "sine-β" (Valko-Virag) and must minimize ¹/₂W + ¹/_βent(·|Π), same for the Ginibre point process in 2D log case β = 2.
- The cristallization result is complete in 1D (uses uniqueness result of Leblé).
- In 2D log case: local version of the result at any mesoscale Leblé
- Generalization to the 2D "two component plasma" Leblé-S-Zeitouni

A CLT for fluctuations of the 2D Coulomb Gas

Theorem (Leblé-S)

Assume d = 2, $w = -\log, \beta > 0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial \Sigma$. Let $f \in C_c^{3,1}(\mathbb{R}^2)$. The law of

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges as $N \to \infty$ to a Gaussian distribution with

$$mean = \frac{1}{2\pi} (\frac{1}{\beta} - \frac{1}{4}) \int \Delta f \left(\mathbb{1}_{\Sigma} + \log \Delta V \right)^{\Sigma}) \qquad var = \frac{1}{2\pi\beta} \int_{\Sigma} |\nabla f^{\Sigma}|^2$$

where f^{Σ} = harmonic extension of f outside Σ . $\rightarrow \sum_{i=1}^{N} \delta_{x_i} - N\mu_V$ converges to the Gaussian Free Field. The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Previous results

2D log case

- Rider-Virag same result for $\beta = 2$, $V(x) = |x|^2$
- Ameur-Hedenmalm-Makarov same result for $\beta = 2$, $V \in C^{\infty}$ and analyticity in case the support of f intersects $\partial \Sigma$
- ► suboptimal bounds (in N^ε, but with quantified error in probability), including at mesoscale, on || ∑^N_{i=1} δ_{xi} − Nµ_V || Sandier-S, Leblé, Bauerschmidt-Bourgade-Nikkula-Yau
- simultaneous result by Bauerschmidt-Bourgade-Nikkula-Yau for f ∈ C⁴_c(Σ)
- ► 1D log case
 - Johansson 1-cut, V polynomial
 - Borot-Guionnet, Shcherbina 1-cut and V, ξ locally analytic, multi-cut and V analytic
 - ▶ universality in *V* of local statistics Bourgade-Erdös-Yau

- Crystallization: identify minimizers of W or of other interesting interaction energies
- Crystallization: understand rate of decay of ρ_2
- Universality in V of local statistics, as in 1D
- Extend the CLT to higher dimensions and Riesz cases
- Prove more results on the two-component case: CLT? Kosterlitz-Thouless phase transition?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

THANK YOU FOR YOUR ATTENTION!