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HISTORY

I First observation of conformal invariance in random
models from physics discovered in 1970 by Polyakov:

[Conformal invariance] makes it possible to calculate
in explicit form any three-point correlators and greatly
limit the possible form of multipoint correlators.

I The development of conformal field theory in the 1980s
(Belavin, Polyakov, Zamolodchikov, Cardy, . . . ) leads to a
detailed non-rigorous understanding of these models.

I Oded Schramm’s discovery of Schramm–Loewner
evolutions in 2000 initiates a rapid expansion in the
rigorous understanding of these models (Schramm,
Werner, Lawler, Sheffield, Smirnov, . . . ).
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OUTLINE

I What are examples of the models we wish to understand?
What is meant precisely by conformal invariance?

I What are Schramm–Loewner Evolutions, and what are
their properties?

I What are conformal loop ensembles, and what can be said
about their geometry?

I How can one understand the geometry of random
surfaces? What about random processes on those surfaces?
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CRITICALITY PHENOMENA: PERCOLATION

I Work on the hexagonal
lattice

I Fix half the boundary
white, and half black

I Flip a coin independently
for each hexagon coloring
it white with probability p,
and black with probability
1− p.
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MACROSCOPIC STRUCTURE: THE INTERFACE

Nothing interesting occurs with individual hexagons, however
macroscopic structures can appear when you consider them
jointly.

I We consider the interface which keeps white hexagons on
the left and black hexagons on the right.
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PERCOLATION p = 0.4

I p small forces the interface along the white boarder.
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PERCOLATION p = 0.6

I p large forces the interface along the black boarder.
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PERCOLATION: p = 1
2

I p critical creates a non-trivial interface.
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PERCOLATION: A PHASE TRANSITION

The picture changes dramatically as p changes:
I When p 6= 1

2 , and the grid dimensions are sent to infinity,
the interface converges to one of the two boundaries.

I When p = 1
2 , and the grid dimensions are sent to infinity,

the interface converges (as probability measures on the
space of curves) to a non-trivial limiting measure.

I This is an example of a phase transition where the observed
quantity changes sharply as a function of p. The value of p
where the change occurs is a critical point, and this value is
often the most interesting.
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CRITICAL PHENOMENA: ISING MODEL

I Work on the hexagonal
lattice with boundary

I Let N denote the number
of edges where the two
incident hexagons have
different colors

I Now take the probability
of a configuration to be
proportional to qN/2 for
q ∈ (0, 1)

I Again consider the
interface
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ISING MODEL: q = 0.8

I q ≈ 1 couples weakly and behaves like percolation.
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ISING MODEL: q = 0.2

I q ≈ 0 couples strongly and creates a trivial interface.
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SCALING LIMITS: THE SETUP

We will be concerned in this talk with scaling limits.
I We work (first) with probability measures µΩ(z,w) on

non-crossing curves within simply connected domains Ω
connecting pairs of boundary points z,w ∈ ∂Ω.

I These measures are designed to describe the limit of the
measures discussed above as the lattice spacing is sent to
zero.
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SCALING LIMITS: DOMAIN MARKOV PROPERTY

I Given a curve γ, the measure µΩ(z,w) conditioned to begin
with the segment γ[0, t] is the same as µΩrγ[0,t](γ(t),w).
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SCALING LIMITS: CONFORMAL INVARIANCE

scaling limit

scaling limit

conformal
map

I Taking a scaling limit
followed by a conformal
map is the same as taking
the scaling limit in the
mapped domain.

I For f : Ω→ f (Ω) a
conformal map:

µf (Ω)(f (z), f (w))

= f ◦ µΩ(z,w)
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SCHRAMM’S BREAKTHROUGH: SCHRAMM–LOEWNER

EVOLUTIONS (SLE)

Assuming these two axioms, these measures on curves may be
completely characterized.

Theorem (Schramm 2000)

Suppose µΩ(z,w) is a measure of non-crossing curves in a simply
connected Ω ⊂ C connecting z,w ∈ ∂Ω which satisfy the domain
Markov property and conformal invariance. Then µ is one of a one
parameter family of probability measures SLEκ for κ ≥ 0.
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MENAGERIE OF EXAMPLES

The collection of models that converge to SLE is quite diverse:
I Percolation exploration process (κ = 6) (Smirnov 2001)
I Loop-erased random walk (κ = 2) (Lawler, Schramm, Werner 2004)
I Uniform spanning tree (κ = 8) (Lawler, Schramm, Werner 2004)
I Level line of the Harmonic Explorer (κ = 4) (Schramm, Sheffield 2005)
I Level line of the Gaussian free field (κ = 4) (Schramm, Sheffield 2006)
I Ising model interface (κ = 3) (Smirnov, Chelkak 2011)
I FK-cluster boundaries (κ = 16/3) (Smirnov, Chelkak 2011)
I Self-avoiding walk (κ = 8/3) (conjectural)
I Double dimer model (κ = 4) (conjectural)
I Q-state Potts’ model (conjectural)
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THE DEFINITION

I Given a curve γ from 0 to∞ in H, define Ht = Hr γ[0, t].
I Let gt : Ht → H be the conformal uniformizing map

normalized so gt(z) = z + tz−1 + O(z−2) as z→∞.
I Then gt satisfies the Loewner differential equation

ġt(z) =
2

gt −Wt
, g0(z) = z,

for some driving function Wt : [0,∞)→ R.

Definition
The (chordal) SLEκ is the random curve produced when Wt is
taken as a

√
κ times a standard Brownian motion.
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SIMULATION OF AN SLE3

I A (two-sided whole-plane) SLE3
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SOME PROPERTIES
Much is known about the geometry of these curves:

I SLEκ curves exist and are simple for κ ≤ 4,
self-intersecting but non-crossing for 4 < κ < 8, and
space-filling for κ ≥ 8 (Rohde, Schramm 2001).

I SLEκ has almost sure Hausdorff dimension d = 1 + κ/8
(Beffara 2008).

I SLEκ curves are reversible for κ < 8 (Zhan 2008; Miller,
Sheffield 2012).

I If γ is an SLEκ curve, then the following limit exists
(Lawler, W. 2013):

G(z,w) := lim
ε,δ0

εd−2δd−2P{rγ(z) < ε, rγ(w) < δ}.

I SLEκ curves may be reparametrized to be Hölder of any
order α < 1/d for κ ≤ 4. (W. 2012)
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A RELATED OBJECT: CONFORMAL LOOP ENSEMBLES

I Sample the model with all
white boundary

I Consider outer connected
component of white
hexagons

I This provides a random
fractal carpet
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CONFORMAL LOOP ENSEMBLES (CLE)

We will again have a pair of axioms on a probability measure µ
on disjoint, non-nested, Jordan loops.

I Conformal invariance: The measure on the collection of
loops satisfies (µ(f (Ω)) = f ◦ µ(Ω)) for conformal f .

I Restriction: Given a simply connected subdomain Ω′ ⊆ Ω,
the collection of loops inside each component, Ωi, of
Ω′ r {int(γ) | γ ∩ (Ω r Ω′) 6= ∅} is µ(Ωi).

Theorem (Sheffield, Werner 2011)

There is precisely a one parameter family of such measures on loops
parametrized by κ ∈ (8/3, 4].
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CARPETS

To study the geometry of these random carpets, we look to the
study of the quasi-conformal geometry of deterministic carpets
for motivation.

Definition
A set T is a carpet if

I int(T) = ∅
I T = Ĉ r

⋃
i int(Di) where {Di} is a countable collection of

pairwise disjoint closed Jordan regions with diam(Di)→ 0.
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QUASICONFORMAL MAPS

Given a function f , define

Lf (r, x) = sup{d(f (y), f (x)) : d(y, x) = r}
lf (r, x) = inf{d(f (y), f (x)) : d(y, x) = r}.

Definition
A function f is K-quasiconformal if

Lf (r, x)

lf (r, x)
≤ K.

These can be thought of as weakened versions of conformal
maps.
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THE UNIFORMIZATION OF (NICE) CARPETS

Theorem (Bonk 2011)

Suppose that T = Ĉ r
⋃

i int(Di) is a carpet such that:
I The ∂Di are uniform quasicircles: the image of a circle under a

K-quasiconformal map for a uniform choice of K,
I The ∂Di are s-separated:

dist(∂Di, ∂Dj)

min{diam(∂Di),diam(∂Dj)}
≥ s, i 6= j.

Then there exists a quasiconformal map f : Ĉ→ Ĉ with f (∂Di) a
circle for all i. If T moreover has measure zero, then such an f is
unique up to Möbius transform.
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THE RIGIDITY OF CARPETS FROM DYNAMICS

Theorem (Bonk, Lyubich, Merenkov 2014)

Suppose J is a carpet obtained as the Julia set of a post-critically
finite rational map. Then any quasisymmetry of J is the restriction of
a Möbius transformation on Ĉ.
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DETERMINISTIC UNIFORMIZATION OF CLE?

How close are CLEκ to satisfying Bonk’s theorem?
I The boundary components of loops in CLEκ are not

quasi-circles.
I The boundary components of loops in CLEκ are not

s-separated.
I There cannot be a quasiconformal map uniformizing the

CLEκ carpet.

Intuitively, they should still somehow “hold on average.”
Can a form of weakened a uniformization theorem be proven
for CLEκ carpets?
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PARTIAL UNIFORMIZATION OF CLE

Given a carpet T with an enumeration of the complementary
components {Dj}∞j=1, let fk be the conformal map uniformizing

Dr
⋃k

i=1 Di to a circle domain in D sending f (∂D1) to a circle
centered at the origin and f (∂D2) to a circle centered on the
positive real axis (which exists and is unique by the Koebe
Theorem).

Theorem (Rohde, W.)

Let T be a CLEκ carpet in the unit disk for κ ≤ 4. Then, with
probability one, the following holds. Let {Dj}∞j=1 be an enumeration of
the complementary components of the CLE inside the disk. Then, for
any n, limk→∞(fk(∂D1), . . . , fk(∂Dn)) exists subsequentially (as
centers and radii) and is non-degenerate (closures of the circles are
disjoint from each other and the boundary of the unit disk).
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THE STRUCTURE OF THE PROOF
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THE PRIMARY ESTIMATE

To obtain the control over the above forms of modulus, we
must provide some form of average roundness of CLE loops.

Lemma (Rohde, W.)

Let γz denote the CLEκ loop surrounding the point z ∈ D. Then we
have that

E

[
diam(γz)

2

area(γz)

]
is finite and integrable in z over D.
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THE FUTURE: RANDOM SURFACES

Given n unit squares, glue these squares together on the edges
to produce a surface homeomorphic to the S2. There are finitely
many ways to do this, so we may pick one such surface at
random. What can be said about:

I The metric space structure? (Le Gall, Miermont 2010-)
I The conformal structure? (Polyakov 1981; Sheffield, Miller

2010-)
I Random models on the surfaces? (KPZ? 1988)

?Knizhnik, Polyakov, and Zamolodchikov



INTRODUCTION CONFORMAL INVARIANCE CURVES (SLE) CARPETS (CLE) SURFACES (LQG) CONCLUSIONS

WHAT DO RANDOM SURFACES LOOK LIKE?

Left image by personal code, right produced using CirclePack (Ken Stephenson).
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CONFORMAL STRUCTURE: PROCESSES ON SURFACES

One of the primary philosophies in this area can be
summarized with the following conjecture:

Conjecture (informal)

Any reasonable random surface model when properly coupled with a
critical statistical physics model, and then conformally uniformized
should yield the same random object (SLE or CLE) as it would if it
were on a deterministic geometry.

Many of the proofs of convergence in deterministic geometry
need to prove that some function of the random model is
discrete holomorphic and then show that these discrete
holomorphic functions converge to true holomorphic functions.
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DISCRETE HOLOMORPHICITY
The following is dates to Isaacs in the 1940s.

a

b

c

d

Definition
A function f from a quadrilateral lattice Q to C is discrete
holomorphic if for each face

f (c)− f (a)

c− a
=

f (d)− f (b)

d− b
.



INTRODUCTION CONFORMAL INVARIANCE CURVES (SLE) CARPETS (CLE) SURFACES (LQG) CONCLUSIONS

CONVERGENCE WITHOUT GLOBAL CONTROL
Existing results (Chelkak, Smirnov 2011; Skopenkov 2013)
require global control on the size of faces. The following
theorem requires only local control.

Definition
We will say that a quadrilateral is K-round if the ratio of all
pairs of lengths is bounded above by K, and all angles are
bounded below by 1/K.

Theorem (W. 2014)

Fix K. Let {Qn} be a sequence of K-round orthogonal quadrilateral
lattices approximating a domain Ω. Then, for any C1(C) boundary
values g, the sequence of solutions to the discrete Dirichlet problem
with boundary values g on Qn converge uniformly to to solution to
the Dirichlet problem in Ω with boundary values g.
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OPEN QUESTIONS

I What more can be said about the conformal geometry of
CLE gaskets? Is there a natural class of maps under which
we have convergence of the Koebe maps?

I To what degree can local control be weakened in the
discrete holomorphic convergence results? Is there even a
sequence of lattices for which convergence fails?

I Many models of random surfaces are obtained by welding
pairs of random trees. Can techniques from the conformal
mating of dendrites or conformally embedded trees be
applied to help understand random surfaces?
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THANK YOU FOR YOUR ATTENTION!
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