The functional equation $f(P)=g(Q)$ in dynamics, number theory, analysis and algebraic geometry

Michael Zieve
University of Michigan

April 25, 2013
Joint work with Alex Carney, Thao Do, Jared Hallett, Ruthi Hortsch, Xiangyi Huang, Yuwei Jiang, Qingyun Sun, Ben Weiss, Elliot Wells, Susan Xia

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$
- Schröder 1871, ..., Yoccoz 1995: $\lambda X \circ P=P \circ Q$

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$
- Schröder 1871, ..., Yoccoz 1995: $\lambda X \circ P=P \circ Q$
- Fatou, Julia, Ritt, 1920's: $f \circ g=g \circ f$ with $f, g \in \mathbb{C}(X)$

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$
- Schröder 1871, ..., Yoccoz 1995: $\lambda X \circ P=P \circ Q$
- Fatou, Julia, Ritt, 1920's: $f \circ g=g \circ f$ with $f, g \in \mathbb{C}(X)$
- and many more.

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$
- Schröder 1871, ..., Yoccoz 1995: $\lambda X \circ P=P \circ Q$
- Fatou, Julia, Ritt, 1920's: $f \circ g=g \circ f$ with $f, g \in \mathbb{C}(X)$
- and many more.

We know all polynomials f, P, g, Q such that $f \circ P=g \circ Q$ (Ritt, 1922).
general published result is if f, g are polynomials and $P, Q \in \mathbb{C}[X, 1 / X]$
are | alirent nolvnomials

Today I'll present all solutions when f, g are polynomials and P, Q are
\qquad

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$
- Schröder 1871, ..., Yoccoz 1995: $\lambda X \circ P=P \circ Q$
- Fatou, Julia, Ritt, 1920's: $f \circ g=g \circ f$ with $f, g \in \mathbb{C}(X)$
- and many more.

We know all polynomials f, P, g, Q such that $f \circ P=g \circ Q$ (Ritt, 1922).
But we aren't close to knowing all solutions in rational functions: the most general published result is if f, g are polynomials and $P, Q \in \mathbb{C}[X, 1 / X]$ are Laurent polynomials (Pakovich, Z 2007).
\qquad
\square

The functional equation $f(P)=g(Q)$

Instances of this equation have been studied for centuries:

- Abel, 1826: $(X+1) \circ P=P \circ Q$
- Schröder 1871, Yoccoz 1995: $\lambda X \circ P=P \circ Q$
- Fatou, Julia, Ritt, 1920's: $f \circ g=g \circ f$ with $f, g \in \mathbb{C}(X)$
- and many more.

We know all polynomials f, P, g, Q such that $f \circ P=g \circ Q$ (Ritt, 1922).
But we aren't close to knowing all solutions in rational functions: the most general published result is if f, g are polynomials and $P, Q \in \mathbb{C}[X, 1 / X]$ are Laurent polynomials (Pakovich, Z 2007).

Today I'll present all solutions when f, g are polynomials and P, Q are rational functions (or more generally, meromorphic functions on \mathbb{C}), and give several consequences.

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Proof sketch:

- Writing $f^{k}(X)$ for the k-th iterate of f, we have $f^{k}(\alpha)=g^{\ell}(\beta)$ for infinitely many pairs (k, ℓ).

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Proof sketch:

- Writing $f^{k}(X)$ for the k-th iterate of f, we have $f^{k}(\alpha)=g^{\ell}(\beta)$ for infinitely many pairs (k, ℓ).
- For any n, m, the equation $f^{m}(X)=g^{n}(Y)$ has infinitely many solutions $X=f^{k-m}(\alpha), Y=g^{\ell-n}(\beta)$.

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Proof sketch:

- Writing $f^{k}(X)$ for the k-th iterate of f, we have $f^{k}(\alpha)=g^{\ell}(\beta)$ for infinitely many pairs (k, ℓ).
- For any n, m, the equation $f^{m}(X)=g^{n}(Y)$ has infinitely many solutions $X=f^{k-m}(\alpha), Y=g^{\ell-n}(\beta)$.
- Every $f^{i}(\alpha)$ and $g^{j}(\beta)$ lies in the ring R generated by α, β and the coefficients of f and g.

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Proof sketch:

- Writing $f^{k}(X)$ for the k-th iterate of f, we have $f^{k}(\alpha)=g^{\ell}(\beta)$ for infinitely many pairs (k, ℓ).
- For any n, m, the equation $f^{m}(X)=g^{n}(Y)$ has infinitely many solutions $X=f^{k-m}(\alpha), Y=g^{\ell-n}(\beta)$.
- Every $f^{i}(\alpha)$ and $g^{j}(\beta)$ lies in the ring R generated by α, β and the coefficients of f and g.
- Hence (Siegel, 1929; Lang, 1960) there are nonconstant Laurent polynomials $P, Q \in \mathbb{C}[X, 1 / X]$ such that $f^{m} \circ P=g^{n} \circ Q$.

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Proof sketch:

- Writing $f^{k}(X)$ for the k-th iterate of f, we have $f^{k}(\alpha)=g^{\ell}(\beta)$ for infinitely many pairs (k, ℓ).
- For any n, m, the equation $f^{m}(X)=g^{n}(Y)$ has infinitely many solutions $X=f^{k-m}(\alpha), Y=g^{\ell-n}(\beta)$.
- Every $f^{i}(\alpha)$ and $g^{j}(\beta)$ lies in the ring R generated by α, β and the coefficients of f and g.
- Hence (Siegel, 1929; Lang, 1960) there are nonconstant Laurent polynomials $P, Q \in \mathbb{C}[X, 1 / X]$ such that $f^{m} \circ P=g^{n} \circ Q$.
- Solve this for each m, n, then piece together the solutions.

A dynamics result

Theorem (Ghioca-Tucker-Z, 2008 \& 2012): For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Proof sketch:

- Writing $f^{k}(X)$ for the k-th iterate of f, we have $f^{k}(\alpha)=g^{\ell}(\beta)$ for infinitely many pairs (k, ℓ).
- For any n, m, the equation $f^{m}(X)=g^{n}(Y)$ has infinitely many solutions $X=f^{k-m}(\alpha), Y=g^{\ell-n}(\beta)$.
- Every $f^{i}(\alpha)$ and $g^{j}(\beta)$ lies in the ring R generated by α, β and the coefficients of f and g.
- Hence (Siegel, 1929; Lang, 1960) there are nonconstant Laurent polynomials $P, Q \in \mathbb{C}[X, 1 / X]$ such that $f^{m} \circ P=g^{n} \circ Q$.
- Solve this for each m, n, then piece together the solutions.

Summary: From dynamics to number theory to $F(P)=G(Q)$ to QED.

Connection with number theory

Our result: For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Reformulate: the set of pairs (m, n) such that $\left(f^{m}(\alpha), g^{n}(\beta)\right)$ lies on the diagonal $X=Y$ consists of finitely many "arithmetic nrogressions" (cosets of cyclic subsemigroups of \mathbb{N}^{2})

Connection with number theory

Our result: For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Reformulate: the set of pairs (m, n) such that $\left(f^{m}(\alpha), g^{n}(\beta)\right)$ lies on the diagonal $X=Y$ consists of finitely many "arithmetic progressions" (cosets of cyclic subsemigroups of \mathbb{N}^{2}).

Connection with number theory

Our result: For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Reformulate: the set of pairs (m, n) such that $\left(f^{m}(\alpha), g^{n}(\beta)\right)$ lies on the diagonal $X=Y$ consists of finitely many "arithmetic progressions" (cosets of cyclic subsemigroups of \mathbb{N}^{2}).

This resembles the Mordell-Lang conjecture (proved by Faltings and Vojta): the intersection of a subvariety V of a (semi-) abelian variety J and a finitely-generated subgroup G of $J(\mathbb{C})$ consists of finitely many cosets of subgroups of G.

Connection with number theory

Our result: For $\alpha, \beta \in \mathbb{C}$ and nonlinear $f, g \in \mathbb{C}[X]$, if the orbits $\{\alpha, f(\alpha), f(f(\alpha)) \ldots\}$ and $\{\beta, g(\beta), g(g(\beta)), \ldots\}$ have infinite intersection, then f and g have a common iterate.

Reformulate: the set of pairs (m, n) such that $\left(f^{m}(\alpha), g^{n}(\beta)\right)$ lies on the diagonal $X=Y$ consists of finitely many "arithmetic progressions" (cosets of cyclic subsemigroups of \mathbb{N}^{2}).

This resembles the Mordell-Lang conjecture (proved by Faltings and Vojta): the intersection of a subvariety V of a (semi-)abelian variety J and a finitely-generated subgroup G of $J(\mathbb{C})$ consists of finitely many cosets of subgroups of G.

It also resembles the Skolem-Mahler-Lech theorem: if a_{1}, a_{2}, \ldots is a sequence of complex numbers satisfying a linear recurrence relation, then the n 's for which $a_{n}=0$ comprise finitely many arithmetic progressions.

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

- Yes if $J=\mathbb{A}^{2}$ and V is a line and S is generated by the maps $(u, v) \mapsto(f(u), v)$ and $(u, v) \mapsto(u, g(v))$ for some nonlinear $f, g \in \mathbb{C}[X]$ (Ghioca, Tucker, Z)

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

- Yes if $J=\mathbb{A}^{2}$ and V is a line and S is generated by the maps $(u, v) \mapsto(f(u), v)$ and $(u, v) \mapsto(u, g(v))$ for some nonlinear $f, g \in \mathbb{C}[X]$ (Ghioca, Tucker, Z)
- Yes if J is a (semi-)abelian variety and S consists of translations (Faltings, Vojta)

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

- Yes if $J=\mathbb{A}^{2}$ and V is a line and S is generated by the maps $(u, v) \mapsto(f(u), v)$ and $(u, v) \mapsto(u, g(v))$ for some nonlinear $f, g \in \mathbb{C}[X]$ (Ghioca, Tucker, Z)
- Yes if J is a (semi-)abelian variety and S consists of translations (Faltings, Vojta)
- Yes if $J=\mathbb{C}^{*} \times \mathbb{C}$ (Skolem-Mahler-Lech)

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

- Yes if $J=\mathbb{A}^{2}$ and V is a line and S is generated by the maps $(u, v) \mapsto(f(u), v)$ and $(u, v) \mapsto(u, g(v))$ for some nonlinear $f, g \in \mathbb{C}[X]$ (Ghioca, Tucker, Z)
- Yes if J is a (semi-)abelian variety and S consists of translations (Faltings, Vojta)
- Yes if $J=\mathbb{C}^{*} \times \mathbb{C}$ (Skolem-Mahler-Lech)
- Yes in several other situations (Benedetto, Ghioca, Kurlberg, Scanlon, Tucker, Vojta, Zannier, Z)

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

- Yes if $J=\mathbb{A}^{2}$ and V is a line and S is generated by the maps $(u, v) \mapsto(f(u), v)$ and $(u, v) \mapsto(u, g(v))$ for some nonlinear $f, g \in \mathbb{C}[X]$ (Ghioca, Tucker, Z)
- Yes if J is a (semi-)abelian variety and S consists of translations (Faltings, Vojta)
- Yes if $J=\mathbb{C}^{*} \times \mathbb{C}$ (Skolem-Mahler-Lech)
- Yes in several other situations (Benedetto, Ghioca, Kurlberg, Scanlon, Tucker, Vojta, Zannier, Z)
- No sometimes.

A common framework

Question: if J is a variety with a subvariety V and a point $\alpha \in J(\mathbb{C})$, and S is a finitely-generated commutative semigroup of endomorphisms of J, then does the set of $s \in S$ for which $s(\alpha) \in V$ consist of finitely many cosets of subsemigroups of S ?

- Yes if $J=\mathbb{A}^{2}$ and V is a line and S is generated by the maps $(u, v) \mapsto(f(u), v)$ and $(u, v) \mapsto(u, g(v))$ for some nonlinear $f, g \in \mathbb{C}[X]$ (Ghioca, Tucker, Z)
- Yes if J is a (semi-)abelian variety and S consists of translations (Faltings, Vojta)
- Yes if $J=\mathbb{C}^{*} \times \mathbb{C}$ (Skolem-Mahler-Lech)
- Yes in several other situations (Benedetto, Ghioca, Kurlberg, Scanlon, Tucker, Vojta, Zannier, Z)
- No sometimes.

Note that the proofs in the various cases seem completely unrelated, so a common proof would shed much light.

Polynomials over the rational numbers

Theorem (Carney-Hortsch-Z)
For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6 -to-1 outside a finite set.

Polynomials over the rational numbers

Theorem (Carney-Hortsch-Z)
For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6 -to-1 outside a finite set.

Polynomials over the rational numbers

Theorem (Carney-Hortsch-Z)
For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6 -to-1 outside a finite set.

This result is best possible:

- The "finite set" cannot be avoided: there are polynomials inducing any prescribed function on any finite set (Lagrange).

Polynomials over the rational numbers

Theorem (Carney-Hortsch-Z)
For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6 -to-1 outside a finite set.

This result is best possible:

- The "finite set" cannot be avoided: there are polynomials inducing any prescribed function on any finite set (Lagrange).
- The " 6 " cannot be improved: for $f(X):=\left(X^{3}-X\right)^{2}$,

$$
f\left(\pm \frac{2 t-1}{t^{2}-t+1}\right)=f\left(\pm \frac{t^{2}-1}{t^{2}-t+1}\right)=f\left(\pm \frac{t^{2}-2 t}{t^{2}-t+1}\right)
$$

for each $t \in \mathbb{Q}$.
$f(P)=g(Q)$ and polynomials over the rational numbers

Theorem (Carney-Hortsch-Z) For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6-to-1 outside a finite set.
$f(P)=g(Q)$ and polynomials over the rational numbers

Theorem (Carney-Hortsch-Z) For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6-to-1 outside a finite set.

Proof sketch:

$f(P)=g(Q)$ and polynomials over the rational numbers

Theorem (Carney-Hortsch-Z) For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6-to-1 outside a finite set.

Proof sketch:

- If f is (≥ 7)-to- 1 infinitely often, then there are infinitely many rational points on some subvariety of $f\left(X_{1}\right)=f\left(X_{2}\right)=\cdots=f\left(X_{7}\right)$ which is not contained in any diagonal $X_{i}=X_{j}($ with $i \neq j)$.

$f(P)=g(Q)$ and polynomials over the rational numbers

Theorem (Carney-Hortsch-Z) For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6-to-1 outside a finite set.

Proof sketch:

- If f is (≥ 7)-to- 1 infinitely often, then there are infinitely many rational points on some subvariety of $f\left(X_{1}\right)=f\left(X_{2}\right)=\cdots=f\left(X_{7}\right)$ which is not contained in any diagonal $X_{i}=X_{j}($ with $i \neq j)$.
- This subvariety is a curve, and by Faltings' theorem (1983) its genus is 0 or 1 .

$f(P)=g(Q)$ and polynomials over the rational numbers

Theorem (Carney-Hortsch-Z) For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6-to-1 outside a finite set.

Proof sketch:

- If f is (≥ 7)-to- 1 infinitely often, then there are infinitely many rational points on some subvariety of $f\left(X_{1}\right)=f\left(X_{2}\right)=\cdots=f\left(X_{7}\right)$ which is not contained in any diagonal $X_{i}=X_{j}$ (with $i \neq j$).
- This subvariety is a curve, and by Faltings' theorem (1983) its genus is 0 or 1 .
- Equivalently, $f \circ P_{1}=f \circ P_{2}=\cdots=f \circ P_{7}$ where the P_{i} are distinct (rational or elliptic) functions.

$f(P)=g(Q)$ and polynomials over the rational numbers

Theorem (Carney-Hortsch-Z) For any $f \in \mathbb{Q}[X]$, the function $\mathbb{Q} \rightarrow \mathbb{Q}$ defined by $c \mapsto f(c)$ is at most 6-to-1 outside a finite set.

Proof sketch:

- If f is (≥ 7)-to- 1 infinitely often, then there are infinitely many rational points on some subvariety of $f\left(X_{1}\right)=f\left(X_{2}\right)=\cdots=f\left(X_{7}\right)$ which is not contained in any diagonal $X_{i}=X_{j}$ (with $i \neq j$).
- This subvariety is a curve, and by Faltings' theorem (1983) its genus is 0 or 1 .
- Equivalently, $f \circ P_{1}=f \circ P_{2}=\cdots=f \circ P_{7}$ where the P_{i} are distinct (rational or elliptic) functions.
- Solve $f \circ P=f \circ Q$, then deduce full results via Ritt's results (again!), determinations of Galois groups of (infinitely many) polynomials, computations of ranks of elliptic curves, Swan conductors, etc.

A plausible generalization

Theorem (Mazur, 1977): Any elliptic curve $Y^{2}=X^{3}+a X+b$ over \mathbb{Q} has at most 16 rational torsion points.

Reformulation: For any nonconstant morphism $f: E_{1} \rightarrow E_{2}$ between genus-1 curves over \mathbb{Q}, the induced map $f: E_{1}(\mathbb{Q}) \rightarrow E_{2}(\mathbb{Q})$ is at most

A plausible generalization

Theorem (Mazur, 1977): Any elliptic curve $Y^{2}=X^{3}+a X+b$ over \mathbb{Q} has at most 16 rational torsion points.

Reformulation: For any nonconstant morphism $f: E_{1} \rightarrow E_{2}$ between genus-1 curves over \mathbb{Q}, the induced map $f: E_{1}(\mathbb{Q}) \rightarrow E_{2}(\mathbb{Q})$ is at most 16-to-1.

Speculation: Perhaps, for any morphism f d-dimensional varieties over \mathbb{Q}, the map f

A plausible generalization

Theorem (Mazur, 1977): Any elliptic curve $Y^{2}=X^{3}+a X+b$ over \mathbb{Q} has at most 16 rational torsion points.

Reformulation: For any nonconstant morphism $f: E_{1} \rightarrow E_{2}$ between genus-1 curves over \mathbb{Q}, the induced map $f: E_{1}(\mathbb{Q}) \rightarrow E_{2}(\mathbb{Q})$ is at most 16-to-1.

Our result: For any morphism $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ over \mathbb{Q}, the induced map $\mathbb{A}^{1}(\mathbb{Q}) \rightarrow \mathbb{A}^{1}(\mathbb{Q})$ is at most 6 -to-1 outside a finite set.

A plausible generalization

Theorem (Mazur, 1977): Any elliptic curve $Y^{2}=X^{3}+a X+b$ over \mathbb{Q} has at most 16 rational torsion points.

Reformulation: For any nonconstant morphism $f: E_{1} \rightarrow E_{2}$ between genus-1 curves over \mathbb{Q}, the induced map $f: E_{1}(\mathbb{Q}) \rightarrow E_{2}(\mathbb{Q})$ is at most 16-to-1.

Our result: For any morphism $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ over \mathbb{Q}, the induced map $\mathbb{A}^{1}(\mathbb{Q}) \rightarrow \mathbb{A}^{1}(\mathbb{Q})$ is at most 6 -to- 1 outside a finite set.

Speculation: Perhaps, for any morphism $f: V_{1} \rightarrow V_{2}$ between d-dimensional varieties over \mathbb{Q}, the map $f: V_{1}(\mathbb{Q}) \rightarrow V_{2}(\mathbb{Q})$ is at most $c(d)$-to-1 outside a lower-dimensional locus ("proper Zariski-closed subset of $V_{2}{ }^{\prime \prime}$).

Square values of polynomials

Theorem (Mazur, 1977): If $f(X) \in \mathbb{Q}[X]$ has degree 3 and no multiple roots, and f takes at least eight square values on \mathbb{Q}, then f takes infinitely many square values on \mathbb{Q}.

Square values of polynomials

Theorem (Mazur, 1977): If $f(X) \in \mathbb{Q}[X]$ has degree 3 and no multiple roots, and f takes at least eight square values on \mathbb{Q}, then f takes infinitely many square values on \mathbb{Q}.

Theorem (Bhargava, 2013): For any $d \geq 3$, a positive proportion of squarefree degree-d polynomials in $\mathbb{Q}[X]$ do not take any square values.

5 takes only finitely many square values.

Square values of polynomials

Theorem (Mazur, 1977): If $f(X) \in \mathbb{Q}[X]$ has degree 3 and no multiple roots, and f takes at least eight square values on \mathbb{Q}, then f takes infinitely many square values on \mathbb{Q}.

Theorem (Bhargava, 2013): For any $d \geq 3$, a positive proportion of squarefree degree-d polynomials in $\mathbb{Q}[X]$ do not take any square values.

Theorem (Faltings, 1983): Any squarefree $f(X) \in \mathbb{Q}[X]$ of degree at least 5 takes only finitely many square values.

Square values of polynomials

Theorem (Mazur, 1977): If $f(X) \in \mathbb{Q}[X]$ has degree 3 and no multiple roots, and f takes at least eight square values on \mathbb{Q}, then f takes infinitely many square values on \mathbb{Q}.

Theorem (Bhargava, 2013): For any $d \geq 3$, a positive proportion of squarefree degree-d polynomials in $\mathbb{Q}[X]$ do not take any square values.

Theorem (Faltings, 1983): Any squarefree $f(X) \in \mathbb{Q}[X]$ of degree at least 5 takes only finitely many square values.

Conjecture (Caporaso-Harris-Mazur, 1997): The number of square values in this result can be bounded solely in terms of $\operatorname{deg}(f)$.

Square values of polynomials

Theorem (Mazur, 1977): If $f(X) \in \mathbb{Q}[X]$ has degree 3 and no multiple roots, and f takes at least eight square values on \mathbb{Q}, then f takes infinitely many square values on \mathbb{Q}.

Theorem (Bhargava, 2013): For any $d \geq 3$, a positive proportion of squarefree degree-d polynomials in $\mathbb{Q}[X]$ do not take any square values.

Theorem (Faltings, 1983): Any squarefree $f(X) \in \mathbb{Q}[X]$ of degree at least 5 takes only finitely many square values.

Conjecture (Caporaso-Harris-Mazur, 1997): The number of square values in this result can be bounded solely in terms of $\operatorname{deg}(f)$. (The current world record for degree 5 polynomials is 321 square values.)

Common values of two polynomials

Theorem (CDHHJSWWXZ): For $f(X), g(X) \in \overline{\mathbb{Q}}[X] \backslash \mathbb{Q}$, the equation $f(X)=g(Y)$ has infinitely many solutions in a number field K is and only if...

Common values of two polynomials

Theorem (CDHHJSWWXZ): For $f(X), g(X) \in \overline{\mathbb{Q}}[X] \backslash \mathbb{Q}$, the equation $f(X)=g(Y)$ has infinitely many solutions in a number field K is and only if...

Common values of two polynomials

Theorem (CDHHJSWWXZ): For $f(X), g(X) \in \overline{\mathbb{Q}}[X] \backslash \mathbb{Q}$, the equation $f(X)=g(Y)$ has infinitely many solutions in a number field K if and only if $f=L \circ F \circ \ell_{1}$ and $g=L \circ G \circ \ell_{2}$ for some $L, F, G, \ell_{1}, \ell_{2} \in \overline{\mathbb{Q}}[X]$ such that ℓ_{i} is linear and (perhaps after switching F and G) either

- $F=X^{n}$ and G is either $X^{i} H(X)^{n}$ or $X^{i}(X+1)^{n-i} H(X)^{n}$ or \ldots
- $F=T_{n}(X)$ and $G(X)^{2}-4=D(X) H(X)^{2}$ with D squarefree of degree ≤ 6
- $F=X^{i}(X+1)^{j}$ and $G=c X^{i}(X+1)^{j}$ for some $c \in \overline{\mathbb{Q}} \backslash\{0,1\}$
- $\max (\operatorname{deg}(F), \operatorname{deg}(G)) \leq 16$ and F, G are on an explicit list.

Common values of two polynomials

Theorem (CDHHJSWWXZ): For $f(X), g(X) \in \overline{\mathbb{Q}}[X] \backslash \mathbb{Q}$, the equation $f(X)=g(Y)$ has infinitely many solutions in a number field K if and only if $f=L \circ F \circ \ell_{1}$ and $g=L \circ G \circ \ell_{2}$ for some $L, F, G, \ell_{1}, \ell_{2} \in \overline{\mathbb{Q}}[X]$ such that ℓ_{i} is linear and (perhaps after switching F and G) either

- $F=X^{n}$ and G is either $X^{i} H(X)^{n}$ or $X^{i}(X+1)^{n-i} H(X)^{n}$ or \ldots
- $F=T_{n}(X)$ and $G(X)^{2}-4=D(X) H(X)^{2}$ with D squarefree of degree ≤ 6
- $F=X^{i}(X+1)^{j}$ and $G=c X^{i}(X+1)^{j}$ for some $c \in \overline{\mathbb{Q}} \backslash\{0,1\}$
- $\max (\operatorname{deg}(F), \operatorname{deg}(G)) \leq 16$ and F, G are on an explicit list.

When $F=T_{n}$:

- We can count the number of corresponding $G \in \overline{\mathbb{Q}}[X]$ with fixed degree and fixed critical values.
- Solutions $G \in K[X]$ of degree N are in bijection with triples (C, σ, P) where C is a curve/ K of genus $\leq 2, \sigma$ is a "hyperelliptic involution" on C, and $P \in C(K)$ satisfies $N([P]-[\sigma(P)])=0$ in $\operatorname{Jac}(C)$.

Common values of two polynomials

Theorem (CDHHJSWWXZ): For $f(X), g(X) \in \overline{\mathbb{Q}}[X] \backslash \mathbb{Q}$, the equation $f(X)=g(Y)$ has infinitely many solutions in a number field K if and only if $f=L \circ F \circ \ell_{1}$ and $g=L \circ G \circ \ell_{2}$ for some $L, F, G, \ell_{1}, \ell_{2} \in \overline{\mathbb{Q}}[X]$ such that ℓ_{i} is linear and (perhaps after switching F and G) either

- $F=X^{n}$ and G is either $X^{i} H(X)^{n}$ or $X^{i}(X+1)^{n-i} H(X)^{n}$ or \ldots
- $F=T_{n}(X)$ and $G(X)^{2}-4=D(X) H(X)^{2}$ with D squarefree of degree ≤ 6
- $F=X^{i}(X+1)^{j}$ and $G=c X^{i}(X+1)^{j}$ for some $c \in \overline{\mathbb{Q}} \backslash\{0,1\}$
- $\max (\operatorname{deg}(F), \operatorname{deg}(G)) \leq 16$ and F, G are on an explicit list.

Proof: by Faltings' theorem and Picard's theorem (see the next slide), the hypotheses are equivalent to asserting that $f \circ P=g \circ Q$ has a solution with P, Q being nonconstant meromorphic functions on \mathbb{C}. So "just" find all such solutions (which is very difficult).

Meromorphic functions

An entire function is a function on \mathbb{C} given by a power series which converges everywhere.

A meromorphic function is the ratio of two entire functions.

Meromorphic functions

An entire function is a function on \mathbb{C} given by a power series which converges everywhere.

A meromorphic function is the ratio of two entire functions.

Meromorphic functions

An entire function is a function on \mathbb{C} given by a power series which converges everywhere.

A meromorphic function is the ratio of two entire functions.
Theorem (Picard, 1887) For any nonconstant $F(X, Y) \in \mathbb{C}[X, Y]$, there exist nonconstant meromorphic $p(t)$ and $q(t)$ with $F(p(t), q(t))=0$ if and only if some irreducible factor of $F(X, Y)$ defines a curve of genus 0 or 1 .

Meromorphic functions

An entire function is a function on \mathbb{C} given by a power series which converges everywhere.

A meromorphic function is the ratio of two entire functions.
Theorem (Picard, 1887) For any nonconstant $F(X, Y) \in \mathbb{C}[X, Y]$, there exist nonconstant meromorphic $p(t)$ and $q(t)$ with $F(p(t), q(t))=0$ if and only if some irreducible factor of $F(X, Y)$ defines a curve of genus 0 or 1 .

Recall Faltings' theorem: For any nonconstant $F(X, Y) \in \mathbb{Q}[X, Y]$, the equation $F(X, Y)=0$ has infinitely many solutions in some number field if and only if some irreducible factor of $F(X, Y)$ defines a curve of genus 0 or 1 .

Meromorphic functions

An entire function is a function on \mathbb{C} given by a power series which converges everywhere.

A meromorphic function is the ratio of two entire functions.
Theorem (Picard, 1887) For any nonconstant $F(X, Y) \in \mathbb{C}[X, Y]$, there exist nonconstant meromorphic $p(t)$ and $q(t)$ with $F(p(t), q(t))=0$ if and only if some irreducible factor of $F(X, Y)$ defines a curve of genus 0 or 1 .

Recall Faltings' theorem: For any nonconstant $F(X, Y) \in \mathbb{Q}[X, Y]$, the equation $F(X, Y)=0$ has infinitely many solutions in some number field if and only if some irreducible factor of $F(X, Y)$ defines a curve of genus 0 or 1 .

This is one instance of a tremendously fruitful set of analogies between complex function theory and number theory.

Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ satisfy $P^{-1}\left(\alpha_{i}\right)=Q^{-1}\left(\alpha_{i}\right)$ for five distinct values $\alpha_{i} \in \mathbb{C}$, then $P=Q$.

Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ satisfy $P^{-1}\left(\alpha_{i}\right)=Q^{-1}\left(\alpha_{i}\right)$ for five distinct values $\alpha_{i} \in \mathbb{C}$, then $P=Q$.

A much-studied question: What if $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for several pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ satisfy $P^{-1}\left(\alpha_{i}\right)=Q^{-1}\left(\alpha_{i}\right)$ for five distinct values $\alpha_{i} \in \mathbb{C}$, then $P=Q$.

A much-studied question: What if $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for several pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

Remark: If $f \circ P=g \circ Q$ with $f, g \in \mathbb{C}(X) \backslash \mathbb{C}$, then $P^{-1}\left(f^{-1}(\gamma)\right)=Q^{-1}\left(g^{-1}(\gamma)\right)$ for every $\gamma \in \mathbb{C}$.

Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ satisfy $P^{-1}\left(\alpha_{i}\right)=Q^{-1}\left(\alpha_{i}\right)$ for five distinct values $\alpha_{i} \in \mathbb{C}$, then $P=Q$.

A much-studied question: What if $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for several pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

Remark: If $f \circ P=g \circ Q$ with $f, g \in \mathbb{C}(X) \backslash \mathbb{C}$, then $P^{-1}\left(f^{-1}(\gamma)\right)=Q^{-1}\left(g^{-1}(\gamma)\right)$ for every $\gamma \in \mathbb{C}$.

Question: Does this account for all pairs (P, Q) such that $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for infinitely many pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ satisfy $P^{-1}\left(\alpha_{i}\right)=Q^{-1}\left(\alpha_{i}\right)$ for five distinct values $\alpha_{i} \in \mathbb{C}$, then $P=Q$.

A much-studied question: What if $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for several pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

Remark: If $f \circ P=g \circ Q$ with $f, g \in \mathbb{C}(X) \backslash \mathbb{C}$, then $P^{-1}\left(f^{-1}(\gamma)\right)=Q^{-1}\left(g^{-1}(\gamma)\right)$ for every $\gamma \in \mathbb{C}$.

Question: Does this account for all pairs (P, Q) such that $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for infinitely many pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

- Yes if $P, Q \in \mathbb{C}(X)$ (Beals-Wetherell-Z, $2009+\ldots$)

Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ satisfy $P^{-1}\left(\alpha_{i}\right)=Q^{-1}\left(\alpha_{i}\right)$ for five distinct values $\alpha_{i} \in \mathbb{C}$, then $P=Q$.

A much-studied question: What if $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for several pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

Remark: If $f \circ P=g \circ Q$ with $f, g \in \mathbb{C}(X) \backslash \mathbb{C}$, then $P^{-1}\left(f^{-1}(\gamma)\right)=Q^{-1}\left(g^{-1}(\gamma)\right)$ for every $\gamma \in \mathbb{C}$.

Question: Does this account for all pairs (P, Q) such that $P^{-1}\left(S_{i}\right)=Q^{-1}\left(T_{i}\right)$ for infinitely many pairs $\left(S_{i}, T_{i}\right)$ of finite subsets of \mathbb{C} ?

- Yes if $P, Q \in \mathbb{C}(X)$ (Beals-Wetherell-Z, $2009+\ldots$)
- Yes if the polynomials $\prod_{s \in S_{i}}(X-s)$ and $\prod_{s \in T_{i}}(X-s)$ have "few" critical points (Weiss-Z)

Value sharing and functional equations

Sample theorem (Weiss-Z): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ and nonempty finite $S, T \subset \mathbb{C}$ satisfy $P^{-1}(S)=Q^{-1}(T)$, and at most $\min (\# S, \# T)-13$ complex numbers are critical points of $f(X):=\prod_{s \in S}(X-s)$ and/or $g(X):=\prod_{s \in T}(X-s)$, then

$$
\begin{equation*}
f(P(t))=\frac{g(Q(t))}{c \cdot g(Q(t))+d} \tag{*}
\end{equation*}
$$

for some $c, d \in \mathbb{C}$.

Value sharing and functional equations

Sample theorem (Weiss-Z): If nonconstant meromorphic functions $P(t)$ and $Q(t)$ and nonempty finite $S, T \subset \mathbb{C}$ satisfy $P^{-1}(S)=Q^{-1}(T)$, and at most $\min (\# S, \# T)-13$ complex numbers are critical points of $f(X):=\prod_{s \in S}(X-s)$ and/or $g(X):=\prod_{s \in T}(X-s)$, then

$$
\begin{equation*}
f(P(t))=\frac{g(Q(t))}{c \cdot g(Q(t))+d} \tag{*}
\end{equation*}
$$

for some $c, d \in \mathbb{C}$.

Theorem (CDHHHJSWWXZ): We know all $f, g \in \mathbb{C}[X]$ and meromorphic P, Q satisfying (*).

How we solved $f(P)=g(Q)$ in polynomials f, g and meromorphic P, Q

By Picard's theorem and uniqueness of meromorphic parametrizations, the problem amounts to determining when $f(X)=g(Y)$ has a component of genus 0 or 1 .

How we solved $f(P)=g(Q)$ in polynomials f, g and meromorphic P, Q

By Picard's theorem and uniqueness of meromorphic parametrizations, the problem amounts to determining when $f(X)=g(Y)$ has a component of genus 0 or 1 .

First classify $f, g \in \mathbb{C}[X]$ for which $f(X)-g(Y)$ is irreducible and defines a curve of genus ≤ 1.

How we solved $f(P)=g(Q)$ in polynomials f, g and meromorphic P, Q

By Picard's theorem and uniqueness of meromorphic parametrizations, the problem amounts to determining when $f(X)=g(Y)$ has a component of genus 0 or 1 .

First classify $f, g \in \mathbb{C}[X]$ for which $f(X)-g(Y)$ is irreducible and defines a curve of genus ≤ 1.

The genus \mathfrak{g} of $f(X)=g(Y)$ can be expressed in terms of the factorization types of all $f(X)-\lambda$ and $g(X)-\lambda$ in $\mathbb{C}[X]$ (with $\lambda \in \mathbb{C}$).

Then determine all corresponding polynomials via computations in

How we solved $f(P)=g(Q)$ in polynomials f, g and meromorphic P, Q

By Picard's theorem and uniqueness of meromorphic parametrizations, the problem amounts to determining when $f(X)=g(Y)$ has a component of genus 0 or 1 .

First classify $f, g \in \mathbb{C}[X]$ for which $f(X)-g(Y)$ is irreducible and defines a curve of genus ≤ 1.

The genus \mathfrak{g} of $f(X)=g(Y)$ can be expressed in terms of the factorization types of all $f(X)-\lambda$ and $g(X)-\lambda$ in $\mathbb{C}[X]$ (with $\lambda \in \mathbb{C}$).

Use this to determine all numerical plausibilities for the factorization types of all $f(X)-\lambda$, assuming $f(X)-g(Y)$ irreducible and $\mathfrak{g} \in\{0,1\}$.

How we solved $f(P)=g(Q)$ in polynomials f, g and meromorphic P, Q

By Picard's theorem and uniqueness of meromorphic parametrizations, the problem amounts to determining when $f(X)=g(Y)$ has a component of genus 0 or 1 .

First classify $f, g \in \mathbb{C}[X]$ for which $f(X)-g(Y)$ is irreducible and defines a curve of genus ≤ 1.

The genus \mathfrak{g} of $f(X)=g(Y)$ can be expressed in terms of the factorization types of all $f(X)-\lambda$ and $g(X)-\lambda$ in $\mathbb{C}[X]$ (with $\lambda \in \mathbb{C})$.

Use this to determine all numerical plausibilities for the factorization types of all $f(X)-\lambda$, assuming $f(X)-g(Y)$ irreducible and $\mathfrak{g} \in\{0,1\}$.

Then determine all corresponding polynomials via computations in fundamental groups, Riemann's existence theorem, and solutions of differential equations.

The reducible case

We cannot immediately resolve the reducible case after solving the irreducible case, since factors of $f(X)-g(Y)$ generally cannot be written in this form.
case, using several ingredients including:

The reducible case

We cannot immediately resolve the reducible case after solving the irreducible case, since factors of $f(X)-g(Y)$ generally cannot be written in this form. Instead we pass from the decomposable case to the indecomposable case, using several ingredients including:

The reducible case

We cannot immediately resolve the reducible case after solving the irreducible case, since factors of $f(X)-g(Y)$ generally cannot be written in this form. Instead we pass from the decomposable case to the indecomposable case, using several ingredients including:

Theorem (Hallett-Wells-Xia-Z, building on Fried, 1973; Feit, 1973; Feit, 1980; Müller, 1993; Cassou-Noguès-Couveignes, 1999; Elkies, 2012) We explicitly know all indecomposable $f(X) \in \mathbb{C}[X]$ for which the Galois group of $f(X)-t$ over $\mathbb{C}(t)$ is neither S_{n} nor A_{n} (where $n:=\operatorname{deg}(f)$).

The reducible case

We cannot immediately resolve the reducible case after solving the irreducible case, since factors of $f(X)-g(Y)$ generally cannot be written in this form. Instead we pass from the decomposable case to the indecomposable case, using several ingredients including:

Theorem (Hallett-Wells-Xia-Z, building on Fried, 1973; Feit, 1973; Feit, 1980; Müller, 1993; Cassou-Noguès-Couveignes, 1999; Elkies, 2012) We explicitly know all indecomposable $f(X) \in \mathbb{C}[X]$ for which the Galois group of $f(X)-t$ over $\mathbb{C}(t)$ is neither S_{n} nor A_{n} (where $n:=\operatorname{deg}(f)$).

Note: the proof of this Theorem crucially uses consequences of the classification of finite simple groups.

The reducible case

We cannot immediately resolve the reducible case after solving the irreducible case, since factors of $f(X)-g(Y)$ generally cannot be written in this form. Instead we pass from the decomposable case to the indecomposable case, using several ingredients including:

Theorem (Hallett-Wells-Xia-Z, building on Fried, 1973; Feit, 1973; Feit, 1980; Müller, 1993; Cassou-Noguès-Couveignes, 1999; Elkies, 2012) We explicitly know all indecomposable $f(X) \in \mathbb{C}[X]$ for which the Galois group of $f(X)-t$ over $\mathbb{C}(t)$ is neither S_{n} nor A_{n} (where $n:=\operatorname{deg}(f)$).

Note: the proof of this Theorem crucially uses consequences of the classification of finite simple groups.

Corollary: If $f, g \in \mathbb{C}[X]$ are indecomposable and $f(X)-g(Y)$ is reducible then either $g=f \circ h$ (with h linear) or $\operatorname{deg}(f)=\operatorname{deg}(g) \leq 31$ and f, g are explicitly known.

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials
- Showing that for $f \in \mathbb{Q}[X]$ the function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is at most 6 -to-1 outside a finite set

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials
- Showing that for $f \in \mathbb{Q}[X]$ the function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is at most 6 -to-1 outside a finite set
- Finding all $f, g \in \overline{\mathbb{Q}}[X]$ such that $f(K) \cap g(K)$ is infinite for some number field K

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials
- Showing that for $f \in \mathbb{Q}[X]$ the function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is at most 6-to-1 outside a finite set
- Finding all $f, g \in \overline{\mathbb{Q}}[X]$ such that $f(K) \cap g(K)$ is infinite for some number field K
- Determining nonempty finite $S, T \subset \mathbb{C}$ such that $P^{-1}(S) \neq Q^{-1}(T)$ for any nonconstant meromorphic P, Q

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials
- Showing that for $f \in \mathbb{Q}[X]$ the function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is at most 6 -to-1 outside a finite set
- Finding all $f, g \in \overline{\mathbb{Q}}[X]$ such that $f(K) \cap g(K)$ is infinite for some number field K
- Determining nonempty finite $S, T \subset \mathbb{C}$ such that $P^{-1}(S) \neq Q^{-1}(T)$ for any nonconstant meromorphic P, Q
- Solving $f^{-1}(U)=g^{-1}(V)$ in $f, g \in \mathbb{C}[X]$ and infinite compact $U, V \subset \mathbb{C}$ (Dinh 2005; Pakovich 2008)

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials
- Showing that for $f \in \mathbb{Q}[X]$ the function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is at most 6 -to-1 outside a finite set
- Finding all $f, g \in \overline{\mathbb{Q}}[X]$ such that $f(K) \cap g(K)$ is infinite for some number field K
- Determining nonempty finite $S, T \subset \mathbb{C}$ such that $P^{-1}(S) \neq Q^{-1}(T)$ for any nonconstant meromorphic P, Q
- Solving $f^{-1}(U)=g^{-1}(V)$ in $f, g \in \mathbb{C}[X]$ and infinite compact $U, V \subset \mathbb{C}$ (Dinh 2005; Pakovich 2008)
- Determining all subvarieties of \mathbb{A}^{n} having an endomorphism of the form $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)$ where each $f_{i} \in \mathbb{C}[X]$ has degree ≥ 2 (Medvedev-Scanlon, 2013)

Summary

Solutions of instances of $f \circ P=g \circ Q$ in polynomials f, g and meromorphic P, Q have been applied to:

- Describing intersections of orbits of complex polynomials
- Showing that for $f \in \mathbb{Q}[X]$ the function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is at most 6-to-1 outside a finite set
- Finding all $f, g \in \overline{\mathbb{Q}}[X]$ such that $f(K) \cap g(K)$ is infinite for some number field K
- Determining nonempty finite $S, T \subset \mathbb{C}$ such that $P^{-1}(S) \neq Q^{-1}(T)$ for any nonconstant meromorphic P, Q
- Solving $f^{-1}(U)=g^{-1}(V)$ in $f, g \in \mathbb{C}[X]$ and infinite compact $U, V \subset \mathbb{C}$ (Dinh 2005; Pakovich 2008)
- Determining all subvarieties of \mathbb{A}^{n} having an endomorphism of the form $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)$ where each $f_{i} \in \mathbb{C}[X]$ has degree ≥ 2 (Medvedev-Scanlon, 2013)
- and several other topics.

