What are the Equations Defining Algebraic Varieties?

Robert Lazarsfeld University of Michigan

Defining Equations of Projective Varieties

Chow's Theorem. Consider

$$X \subseteq \mathbf{P}^r = \mathbf{P}^r(\mathbf{C})$$

a complex submanifold. Then X is an algebraic variety, i.e. \exists homogeneous polynomials

$$F_{\alpha} = F_{\alpha}(X_0, \ldots, X_r)$$

such that

$$X = \{F_1 = \ldots = F_N = 0\}.$$

Question: What can one say about the defining equations $\{F_{\alpha}\}$, e.g. their degrees?

Answer: In this generality, nothing.

(Choose any $\{F_{\alpha}\}$, use to define $X \subset \mathbf{P}^{r}$.)

<u>Better Question</u>: Study "nice" embeddings of given X.

Today: "nice" = "very positive"

• Embedding $X \subseteq \mathbf{P}^r$ defined by choosing holomorphic line bundle L, and basis

$$s_0$$
, ..., $s_r \in \Gamma(X, L)$.

• Define

$$X \hookrightarrow \mathbf{P}^r$$
 via $x \mapsto [s_0(x), \dots s_r(x)].$

• We will be interested in L where $c_1(L)$ is very positive.

Example. Take $C = \mathbf{P}^1$, $L = \mathcal{O}_{\mathbf{P}^1}(3)$, giving $\mathbf{P}^1 \hookrightarrow \mathbf{P}^3$, $[s,t] \mapsto [s^3, s^2t, st^2, t^3]$.

Image is set

$$C = \left\{ \operatorname{rank} \begin{bmatrix} T_0 & T_1 & T_2 \\ T_1 & T_2 & T_3 \end{bmatrix} \le 1 \right\} \subseteq \mathbf{P}^3.$$

So C cut out by three quadratic polynomials

$$\Delta_{01} = T_0 T_2 - T_1^2$$

$$\Delta_{02} = T_0 T_3 - T_1 T_2$$

$$\Delta_{12} = T_1 T_3 - T_2^2.$$

Example. Say $E = C/\Lambda$ an elliptic curve.

• If deg L = 3, get

 $E \subseteq \mathbf{P}^2, \quad E = \{G = 0\}$

with $\deg(G) = 3$.

• If deg L = 4, get

 $E \subseteq \mathbf{P}^3, E = \{Q_1 = Q_2 = 0\},\$ with deg $(Q_1) = deg(Q_2) = 2.$

<u>Theorem</u> [Castelnuovo, Mumford, Kempf, ...] If X is smooth variety, and

$$X \subseteq \mathbf{P}^r$$

is defined by L with

$$c_1(L) \gg 0,$$

then X cut out by polynomials of degree 2.

<u>Example</u>. (Castelnuovo) When X is curve of genus g, then conclusion holds when

$$\deg(L) \geq 2g+2.$$

<u>Sidman–Smith</u>: When $c_1(L) \gg 0$, X is cut out in \mathbf{P}^r by the 2 × 2 minors of matrix of linear forms.

<u>Two Issues</u>.

(I). The theorem guarantees that $X \subseteq \mathbf{P}^r$ is cut out by quadrics if $c_1(L)$ is sufficiently positive. What happens if we let L become even more positive?

Example. If g(X) = g, what can we say when

$$\deg(L) \geq 2g + 3?$$

(II). Can't easily read off invariants of X from number or form of quadrics defining it.

<u>Green</u>: Should study higher syzygies among defining equations.

Syzygies

Consider polynomial ring:

$$S = \mathbf{C}[T_0, \ldots, T_r],$$

ideal

$$I = (Q_1, \dots, Q_N) \subseteq S$$

and to fix ideas say $deg(Q_{\alpha}) = 2$.

<u>Hilbert</u>: Consider *syzygies* among the Q_{α} , i.e. relations of the form

$$\sum R_{\alpha} \cdot Q_{\alpha} \equiv 0 \qquad (*)$$

where the R_{α} are polynomials with deg $R_{\alpha} = q$. Say that (*) is a *second* syzygy of *weight* q.

Example: Return to

$$C = \mathbf{P}^1 \hookrightarrow \mathbf{P}^3 , \ [s,t] \mapsto [s^3, s^2t, st^2, t^3].$$

Recall that

$$C = \left\{ \operatorname{rank} \begin{bmatrix} T_0 & T_1 & T_2 \\ T_1 & T_2 & T_3 \end{bmatrix} \le 1 \right\} \subseteq \mathbf{P}^3,$$

6

so C defined by

$$\Delta_{01} = T_0 T_2 - T_1^2$$

$$\Delta_{02} = T_0 T_3 - T_1 T_2$$

$$\Delta_{12} = T_1 T_3 - T_2^2.$$

Repeat row of matrix and expand resulting determinant:

$$\det \begin{bmatrix} T_0 & T_1 & T_2 \\ T_1 & T_2 & T_3 \\ T_0 & T_1 & T_2 \end{bmatrix} \equiv 0,$$

SO

$$T_2 \cdot \Delta_{01} - T_1 \cdot \Delta_{02} + T_0 \cdot \Delta_{12} = 0.$$

Similarly,

$$T_3 \cdot \Delta_{01} - T_2 \cdot \Delta_{02} + T_1 \cdot \Delta_{12} = 0.$$

No other syzygies.

So here all syzygies have minimal weight q = 1.

Example: Consider degree four elliptic curve

$$E = \mathbf{C}/\Lambda \subseteq \mathbf{P}^3.$$

Recall

$$E = \{Q_1 = Q_2 = 0.\}.$$

Here only syzygy is

$$Q_2 \cdot Q_1 - Q_1 \cdot Q_2 = 0,$$

which has weight q = 2.

Returning to ideal

$$I = (Q_1, \ldots, Q_N) \subseteq S,$$

one considers next

 $\left\{ \text{Third syzygies} \right\} = \begin{cases} \text{Relations among coeffi-} \\ \text{cients of second syzygies} \end{cases}, \\ \text{and so on.} \end{cases}$

(Constructing *minimal free resolution* of I.)

Hibert's Theorem on Syzygies: Process stops after at most r steps.

<u>Definition</u>. Given *L* defining

$$X \subseteq \mathbf{P}^r$$

one says that L satisfies Property (N_p) if:

• X cut out by quadrics (p = 1);

• First p modules of syzygies of X generated by relations with minimal possible weight q = 1.

<u>"Green's Principle"</u>: On any smooth X, Property (N_p) holds linearly in positivity of embedding line bundle.

Fix reference Kähler form ω_0 , and suppose that L_d is line bundle such that

$$c_1(L_d) = d \cdot \omega_0 + \eta,$$

 $\eta = \text{fixed } (1,1) \text{-form.}$

<u>Theorem</u>. (Many people...) There exist constants A, B > 0 (depending on X, ω_0, η) such that L_d satisfies (N_p) when

$$d \geq A \cdot p + B.$$

Example (Green). Consider X a curve with g(X) = g, and suppose deg $(L_d) = d$. Then (N_p) holds when

 $d \geq 2g+1+p.$

Philosophy: As positivity of embedding grows, the algebraic properties of

$$X \subseteq \mathbf{P}^r$$

become simpler.

<u>Note</u>: Assume as above $c_1(L_d) = d \cdot \omega_0 + \eta$, and say

 $\dim X = n.$

 Number of syzygy modules that occur is approximately

$$r(L_d) = C \cdot d^n + LOT$$

• Number of syzygy modules governed by results just stated grows linearly in d.

<u>So</u>: When $n = \dim X \ge 2$, Green's principle ignores most of syzygies that occur!

Ottaviani-Paoletti: For

 $X = \mathbf{P}^n$, $L_d = \mathcal{O}_{\mathbf{P}^n}(d)$,

 (N_p) <u>fails</u> when p = 3d - 2.

Question: When $n \ge 2$, what can one say about the asymptotic shape of syzygies of embedding

$$X \subseteq \mathbf{P}^{r_d}$$

defined by L_d as $d \to \infty$?

Will initially focus on which weights of syzygies appear.

Asymptotic Non-Vanishing Thms (with L. Ein)

As before, consider X with dim X = n, and L_d on X with

$$c_1(L_d) = d \cdot \omega_0 + \eta.$$

 L_d defines

$$X \subseteq \mathbf{P}^{r_d}$$
 with $r_d = O(d^n)$.

Are interested in p^{th} syzygies of X for

1 \leq p \leq r_d

when $d \gg 0$.

<u>General Facts</u>. For $d \gg 0$:

(I). All syzygies of X have weights

$$1 \leq q \leq n+1.$$

(II). [Green et al] L_d has syzygies of maximal weight q = n + 1 if and only if

$$\Gamma(X,\Omega_X^n)\neq 0,$$

in which case such syzygies appear only for a few large values of p.

<u>Rmk</u>. Follows from (I) and (II), that for curves, essentially only syzygies that appear are those of weight q = 1 (\implies Green's theorem.)

<u>Problem</u>: Fix $q \in [1, n]$. For which

$$p \in [1, r_d]$$

does L_d give rise to a p^{th} syzygy of weight q when $d \gg 0$?

<u>Theorem A</u> Fix $q \in [1, n]$. There exist constants $C_1, C_2 > 0$ with the property that if

$$d \gg 0,$$

then L_d determines p^{th} syzygy of weight q for every p with

$$C_1 \cdot d^{q-1} \leq p \leq r_d - C_2 \cdot d^{n-1}.$$

<u>Rmk</u>. For fixed $q \in [1, n]$, consider the ratio

$$\frac{\#\left\{p\in[1,r_d]\mid\exists\ p^{\mathsf{th}}\ \mathsf{syz.}\ \mathsf{of}\ \mathsf{weight}\ q\right\}}{\#\left\{\ p\in[1,r_d]\ \right\}}$$

Since $r_d = O(d^n)$, Theorem implies:

Ratio
$$\longrightarrow 1$$
 as $d \longrightarrow \infty$.

(I.e. asymptotically in d, "essentially all" the syzygy modules that could have generator in weight q actually do have such generators.)

<u>Conjecture</u>. Fix $1 \le q \le n$. Then $K_{p,q}(L_d) = 0$

for $p \leq O(d^{q-1})$.

Veronese Varieties

Take $X = \mathbf{P}^n$ and $L_d = \mathcal{O}_{\mathbf{P}^n}(d)$. Use all monomials of degree d to define embedding

$$\mathbf{P}^n \hookrightarrow \mathbf{P}^{r_d}$$
, $r_d = \binom{n+d}{d} - 1.$

Image is d^{th} Veronese embedding of \mathbf{P}^n .

Syzygies of Veronese varieties studied eg by Ottaviani-Paoletti, Rubei, Bruns-Conca-Römer.

<u>Theorem B</u>. Fix $q \in [1, n]$. If $d \gg 0$ then the Veronese variety carries p^{th} syzygies of weight q for

$$\binom{d+q}{q} - \binom{d-1}{q} - q \leq p$$
$$p \leq \binom{d+n}{n} - \binom{d+n-q}{n-q} + \binom{n}{n-q} - q - 1.$$

<u>Ex</u>. Take q = 2, n = 2. Then \exists syzygies of weight q = 2 for

$$3d-2 \leq p \leq r_d-2$$

(Thm of Ottaviani-Paoletti.)

 $\frac{\text{Conjecture}}{d \ge q+1}.$ Bound is optimal for all $q \in [1, n]$,

Vector space of p^{th} syzygies of weight q are a representation of SL(n+1).

<u>Ask</u>: How many different irreducible representations appear?

Fulger-Zhou: For fixed p, as $d \to \infty$:

 $\begin{pmatrix} \# \text{ of irreps in space of } p^{\text{th syzy-}} \\ \text{gies of weight } q = 1 \end{pmatrix} = O(d^p).$

Intuition for Proof of Thm A.

Fix a hypersurface $\overline{X} \subseteq X$, and consider composition

$$\overline{X} \subseteq X \subseteq \mathbf{P}^{r_d}.$$

Then \overline{X} embeds in a linear space of very large codimension, and by induction on dim, one can see that syzygies of \overline{X} in \mathbf{P}^{r_d} have many different weights. Expect that these contribute to syzygies of X in \mathbf{P}^{r_d} .

<u>Betti Numbers</u>. (with Ein, Erman)

Consider X, L_d as before. Define

$$k_{p,q}(L_d) = \dim \left\{ p^{\text{th}} \text{ syzygies of weight } q \right\}.$$

<u>Question</u>. Fix $1 \le q \le n$. Can one say anything about the asymptotics of these betti numbers as $d \to \infty$?

Curves: Take

$$g(C) = g , \deg(L_d) = d$$
$$r_d = d - g.$$

For large d, want to consider the behavior of the dimension

$$k_{p,1} =_{\mathsf{def}} k_{p,1}(L_d)$$

as a function of p.

<u>Ex</u>. Plot of $k_{p,1}$ for g = 10, d = 60.

19

<u>Prop</u>. Fix C, L_d as above, and let $\{p_d\}$ be a sequence of integers such that

$$p_d \longrightarrow \frac{r_d}{2} + a \cdot \frac{\sqrt{r_d}}{2}$$

for some fixed number a (ie. $\lim \frac{2p_d - r_d}{\sqrt{r_d}} = a$). Then as $d \to \infty$,

$$\frac{1}{2^{r_d}} \cdot \sqrt{\frac{2\pi}{r_d}} \cdot k_{p_d,1} \longrightarrow e^{-a^2/2}.$$

What about general X, L_d ?

One can hope that similar picture holds for $k_{p,q}(L_d)$ for every $q \in [1, n]$.

<u>Conjecture</u>: For each $q \in [1, n]$ there is a function F(d) (depending on X and geometric data) such that

$$F(d) \cdot k_{p_d,q}(L_d) \longrightarrow e^{-a^2/2}$$

as $d \to \infty$ and $p_d \to \frac{r_d}{2} + a \cdot \frac{\sqrt{r_d}}{2}$.

20

<u>Example</u>. Betti numbers $k_{p,1}$ of 4-fold Veronese embedding of \mathbf{P}^2 .

(Biggest example we could work out exactly on computer.)

<u>Confession</u>: Don't know how to verify Conjecture for any X of dimension $n \ge 2$!

(Ex. What are asymptotics of betti numbers for Veronese embeddings of P^2 ??)

Evidence for Conjecture comes from

<u>Probabilistic Picture</u>: For "random resolutions" having syzygies with fixed weights, betti numbers become normally distributed as length of resolution grows.

<u>Ask</u>: What does one mean by "random resolution?"

As model for syzygies of very positive embeddings of varieties of fixed dimension n, consider resolutions of modules M over polynomial rings in r + 1 variables that have syzygies only in weights $1 \le q \le n$.

Eisenbud–Schreyer: Proved conjecture of Boij-Söderberg describing (up to scaling) all possible configurations of betti numbers $k_{p,q}(M)$ for M as above. • Betti tables are (essentially) parametrized up to scaling by numerical parameters

$$x = \{x_I\} \in [0, 1]^{\binom{r}{n-1}}$$

• So get functions

$$k_{p,q}: \Omega_r =_{\mathsf{def}} [0,1]^{\binom{r}{n-1}} \longrightarrow \mathbf{R}$$

describing Betti numbers of formal resolution described by Boij-Söderberg coefficient vector $x \in \Omega_r$.

<u>Plan</u>: For fixed $1 \le q \le n$, choose

 $x \in \Omega_r$ uniformly at random,

and study distribution in p of the formal betti numbers $k_{p,q}(x)$.

Example. Plot of $k_{p,1}$ for random x with n = 2 and r = 14.

<u>Example</u>. Plot of $k_{p,1}$ for random x with n = 2 and r = 60.

24

<u>Theorem C</u>. (Informal Statement). Fix $1 \le q \le n$. Then as $r \to \infty$, for "most" choices of

 $x \in \Omega_r$

the formal betti numbers

 $k_{p,q}(x) \in \mathbf{R}$

display the sort of normal distribution (in p) that is predicted by the conjecture.

So at least the Conjecture predicts that "reallife" Betti numbers have typical, rather than exceptional, behavior.