What are the Equations Defining Algebraic Varieties?

Robert Lazarsfeld University of Michigan

Defining Equations of Projective Varieties

Chow's Theorem. Consider

$$
X \subseteq \mathbf{P}^{r}=\mathbf{P}^{r}(\mathbf{C})
$$

a complex submanifold. Then X is an algebraic variety, i.e. \exists homogeneous polynomials

$$
F_{\alpha}=F_{\alpha}\left(X_{0}, \ldots, X_{r}\right)
$$

such that

$$
X=\left\{F_{1}=\ldots=F_{N}=0\right\}
$$

Question: What can one say about the defining equations $\left\{F_{\alpha}\right\}$, e.g. their degrees?

Answer: In this generality, nothing.
(Choose any $\left\{F_{\alpha}\right\}$, use to define $X \subset \mathbf{P}^{r}$.)
Better Question: Study "nice" embeddings of given X.

Today: "nice" = "very positive"

- Embedding $X \subseteq \mathbf{P}^{r}$ defined by choosing holomorphic line bundle L, and basis

$$
s_{0}, \ldots, s_{r} \in \Gamma(X, L)
$$

- Define

$$
X \hookrightarrow \mathbf{P}^{r} \quad \text { via } \quad x \mapsto\left[s_{0}(x), \ldots s_{r}(x)\right]
$$

- We will be interested in L where $c_{1}(L)$ is very positive.

Example. Take $C=\mathbf{P}^{1}, L=\mathcal{O}_{\mathbf{P}^{1}}(3)$, giving

$$
\mathbf{P}^{1} \hookrightarrow \mathbf{P}^{3}, \quad[s, t] \mapsto\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]
$$

Image is set

$$
C=\left\{\operatorname{rank}\left[\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{1} & T_{2} & T_{3}
\end{array}\right] \leq 1\right\} \subseteq \mathbf{P}^{3}
$$

So C cut out by three quadratic polynomials

$$
\begin{aligned}
& \Delta_{01}=T_{0} T_{2}-T_{1}^{2} \\
& \Delta_{02}=T_{0} T_{3}-T_{1} T_{2} \\
& \Delta_{12}=T_{1} T_{3}-T_{2}^{2} .
\end{aligned}
$$

Example. Say $E=\mathrm{C} / \wedge$ an elliptic curve.

- If $\operatorname{deg} L=3$, get

$$
E \subseteq \mathbf{P}^{2}, \quad E=\{G=0\}
$$

with $\operatorname{deg}(G)=3$.

- If $\operatorname{deg} L=4$, get

$$
E \subseteq \mathrm{P}^{3}, \quad E=\left\{Q_{1}=Q_{2}=0\right\}
$$

with $\operatorname{deg}\left(Q_{1}\right)=\operatorname{deg}\left(Q_{2}\right)=2$.

Theorem [Castelnuovo, Mumford, Kempf, ...] If X is smooth variety, and

$$
X \subseteq \mathbf{P}^{r}
$$

is defined by L with

$$
c_{1}(L) \gg 0,
$$

then X cut out by polynomials of degree 2 .
Example. (Castelnuovo) When X is curve of genus g, then conclusion holds when

$$
\operatorname{deg}(L) \geq 2 g+2
$$

Sidman-Smith: When $c_{1}(L) \gg 0, X$ is cut out in \mathbf{P}^{r} by the 2×2 minors of matrix of linear forms.

Two Issues.

(I). The theorem guarantees that $X \subseteq \mathbf{P}^{r}$ is cut out by quadrics if $c_{1}(L)$ is sufficiently positive. What happens if we let L become even more positive?

Example. If $g(X)=g$, what can we say when $\operatorname{deg}(L) \geq 2 g+3$?
(II). Can't easily read off invariants of X from number or form of quadrics defining it.

Green: Should study higher syzygies among defining equations.

Syzygies

Consider polynomial ring:

$$
S=\mathrm{C}\left[T_{0}, \ldots, T_{r}\right],
$$

ideal

$$
I=\left(Q_{1}, \ldots, Q_{N}\right) \subseteq S
$$

and to fix ideas say $\operatorname{deg}\left(Q_{\alpha}\right)=2$.
Hilbert: Consider syzygies among the Q_{α}, i.e. relations of the form

$$
\begin{equation*}
\sum R_{\alpha} \cdot Q_{\alpha} \equiv 0 \tag{*}
\end{equation*}
$$

where the R_{α} are polynomials with $\operatorname{deg} R_{\alpha}=q$.
Say that $(*)$ is a second syzygy of weight q.
Example: Return to

$$
C=\mathbf{P}^{1} \hookrightarrow \mathbf{P}^{3},[s, t] \mapsto\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right] .
$$

Recall that

$$
C=\left\{\operatorname{rank}\left[\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{1} & T_{2} & T_{3}
\end{array}\right] \leq 1\right\} \subseteq \mathbf{P}^{3}
$$

so C defined by

$$
\begin{aligned}
\Delta_{01} & =T_{0} T_{2}-T_{1}^{2} \\
\Delta_{02} & =T_{0} T_{3}-T_{1} T_{2} \\
\Delta_{12} & =T_{1} T_{3}-T_{2}^{2} .
\end{aligned}
$$

Repeat row of matrix and expand resulting determinant:

$$
\operatorname{det}\left[\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{1} & T_{2} & T_{3} \\
T_{0} & T_{1} & T_{2}
\end{array}\right] \equiv 0,
$$

so

$$
T_{2} \cdot \Delta_{01}-T_{1} \cdot \Delta_{02}+T_{0} \cdot \Delta_{12}=0
$$

Similarly,

$$
T_{3} \cdot \Delta_{01}-T_{2} \cdot \Delta_{02}+T_{1} \cdot \Delta_{12}=0
$$

No other syzygies.
So here all syzygies have minimal weight $q=1$.

Example: Consider degree four elliptic curve

$$
E=\mathbf{C} / \wedge \subseteq \mathbf{P}^{3}
$$

Recall

$$
E=\left\{Q_{1}=Q_{2}=0 .\right\}
$$

Here only syzygy is

$$
Q_{2} \cdot Q_{1}-Q_{1} \cdot Q_{2}=0
$$

which has weight $q=2$.

Returning to ideal

$$
I=\left(Q_{1}, \ldots, Q_{N}\right) \subseteq S
$$

one considers next
$\{$ Third syzygies $\}=\left\{\begin{array}{l}\text { Relations among coeffi- } \\ \text { cients of second syzygies }\end{array}\right\}$, and so on.
(Constructing minimal free resolution of I.)
Hibert's Theorem on Syzygies: Process stops after at most r steps.

Definition. Given L defining

$$
X \subseteq \mathbf{P}^{r}
$$

one says that L satisfies Property $\left(N_{p}\right)$ if:

- X cut out by quadrics ($p=1$);
- First p modules of syzygies of X generated by relations with minimal possible weight $q=1$.
"Green's Principle": On any smooth X, Property (N_{p}) holds linearly in positivity of embedding line bundle.

Fix reference Kähler form ω_{0}, and suppose that L_{d} is line bundle such that

$$
c_{1}\left(L_{d}\right)=d \cdot \omega_{0}+\eta,
$$

$\eta=$ fixed (1, 1)-form.
Theorem. (Many people...) There exist constants $A, B>0$ (depending on X, ω_{0}, η) such that L_{d} satisfies (N_{p}) when

$$
d \geq A \cdot p+B
$$

Example (Green). Consider X a curve with $\overline{g(X)}=g$, and suppose $\operatorname{deg}\left(L_{d}\right)=d$. Then (N_{p}) holds when

$$
d \geq 2 g+1+p
$$

Philosophy: As positivity of embedding grows, the algebraic properties of

$$
X \subseteq \mathbf{P}^{r}
$$

become simpler.
Note: Assume as above $c_{1}\left(L_{d}\right)=d \cdot \omega_{0}+\eta$, and say

$$
\operatorname{dim} X=n
$$

- Number of syzygy modules that occur is approximately

$$
r\left(L_{d}\right)=C \cdot d^{n}+\text { LOT }
$$

- Number of syzygy modules governed by results just stated grows linearly in d.

So: When $n=\operatorname{dim} X \geq 2$, Green's principle ignores most of syzygies that occur!

Ottaviani-Paoletti: For

$$
X=\mathbf{P}^{n} \quad, \quad L_{d}=\mathcal{O}_{\mathbf{P}^{n}}(d),
$$

(N_{p}) fails when $p=3 d-2$.

Question: When $n \geq 2$, what can one say about the asymptotic shape of syzygies of embedding

$$
X \subseteq \mathbf{P}^{r_{d}}
$$

defined by L_{d} as $d \rightarrow \infty$?
Will initially focus on which weights of syzygies appear.

Asymptotic Non-Vanishing Thms (with L. Fin)

As before, consider X with $\operatorname{dim} X=n$, and L_{d} on X with

$$
c_{1}\left(L_{d}\right)=d \cdot \omega_{0}+\eta .
$$

L_{d} defines

$$
X \subseteq \mathbf{P}^{r_{d}} \text { with } r_{d}=O\left(d^{n}\right)
$$

Are interested in $p^{\text {th }}$ syzygies of X for

$$
1 \leq p \leq r_{d}
$$

when $d \gg 0$.

General Facts. For $d \gg 0$:
(I). All syzygies of X have weights

$$
1 \leq q \leq n+1
$$

(II). [Green et al] L_{d} has syzygies of maximal weight $q=n+1$ if and only if

$$
\Gamma\left(X, \Omega_{X}^{n}\right) \neq 0
$$

in which case such syzygies appear only for a few large values of p.

Rmk. Follows from (I) and (II), that for curves, essentially only syzygies that appear are those of weight $q=1$ (\Longrightarrow Green's theorem.)

Problem: Fix $q \in[1, n]$. For which

$$
p \in\left[1, r_{d}\right]
$$

does L_{d} give rise to a $p^{\text {th }}$ syzygy of weight q when $d \gg 0$?

Theorem A Fix $q \in[1, n]$. There exist constants $C_{1}, C_{2}>0$ with the property that if

$$
d \gg 0,
$$

then L_{d} determines $p^{\text {th }}$ syzygy of weight q for every p with

$$
C_{1} \cdot d^{q-1} \leq p \leq r_{d}-C_{2} \cdot d^{n-1} .
$$

Rmk. For fixed $q \in[1, n]$, consider the ratio

$$
\frac{\#\left\{p \in\left[1, r_{d}\right] \mid \exists p^{\mathrm{th}} \text { syz. of weight } q\right\}}{\#\left\{p \in\left[1, r_{d}\right]\right\}}
$$

Since $r_{d}=O\left(d^{n}\right)$, Theorem implies:
Ratio $\longrightarrow 1$ as $d \longrightarrow \infty$.
(I.e. asymptotically in d, "essentially all" the syzygy modules that could have generator in weight q actually do have such generators.)

Conjecture. Fix $1 \leq q \leq n$. Then

$$
K_{p, q}\left(L_{d}\right)=0
$$

for $p \leq O\left(d^{q-1}\right)$.

Veronese Varieties

Take $X=\mathbf{P}^{n}$ and $L_{d}=\mathcal{O}_{\mathbf{P}^{n}}(d)$. Use all monomials of degree d to define embedding

$$
\mathbf{P}^{n} \hookrightarrow \mathbf{P}^{r_{d}} \quad, \quad r_{d}=\binom{n+d}{d}-1
$$

Image is $d^{\text {th }}$ Veronese embedding of \mathbf{P}^{n}.

Syzygies of Veronese varieties studied eg by Ottaviani-Paoletti, Rubei, Bruns-Conca-Römer.

Theorem B. Fix $q \in[1, n]$. If $d \gg 0$ then the Veronese variety carries $p^{\text {th }}$ syzygies of weight q for

$$
\begin{gathered}
\binom{d+q}{q}-\binom{d-1}{q}-q \leq p \\
p \leq\binom{ d+n}{n}-\binom{d+n-q}{n-q}+\binom{n}{n-q}-q-1 .
\end{gathered}
$$

Ex. Take $q=2, n=2$. Then \exists syzygies of weight $q=2$ for

$$
3 d-2 \leq p \leq r_{d}-2
$$

(Thm of Ottaviani-Paoletti.)

Conjecture. Bound is optimal for all $q \in[1, n]$, $d \geq q+1$.

Vector space of $p^{\text {th }}$ syzygies of weight q are a representation of $\operatorname{SL}(n+1)$.

Ask: How many different irreducible representations appear?

Fulger-Zhou: For fixed p, as $d \rightarrow \infty$:
$\left(\begin{array}{l}\# \text { of irreps in space of } p^{\text {th }} \text { syzy- } \\ \text { gies of weight } \\ q=1\end{array}\right)=O\left(d^{p}\right)$.

Intuition for Proof of Thm A.

Fix a hypersurface $\bar{X} \subseteq X$, and consider composition

$$
\bar{X} \subseteq X \subseteq \mathbf{P}^{r_{d}} .
$$

Then \bar{X} embeds in a linear space of very large codimension, and by induction on dim, one can see that syzygies of \bar{X} in $\mathbf{P}^{r_{d}}$ have many different weights. Expect that these contribute to syzygies of X in $\mathbf{P}^{r_{d}}$.

Betti Numbers. (with Ein, Erman)

Consider X, L_{d} as before. Define

$$
k_{p, q}\left(L_{d}\right)=\operatorname{dim}\left\{p^{\text {th }} \text { syzygies of weight } q\right\} .
$$

Question. Fix $1 \leq q \leq n$. Can one say anything about the asymptotics of these betti numbers as $d \rightarrow \infty$?

Curves: Take

$$
\begin{aligned}
g(C)=g & , \operatorname{deg}\left(L_{d}\right)=d \\
r_{d} & =d-g .
\end{aligned}
$$

For large d, want to consider the behavior of the dimension

$$
k_{p, 1}=\text { def } k_{p, 1}\left(L_{d}\right)
$$

as a function of p.

Ex. Plot of $k_{p, 1}$ for $g=0, d=60$.

Ex. Plot of $k_{p, 1}$ for $g=10, d=60$.

Prop. Fix C, L_{d} as above, and let $\left\{p_{d}\right\}$ be a sequence of integers such that

$$
p_{d} \longrightarrow \frac{r_{d}}{2}+a \cdot \frac{\sqrt{r_{d}}}{2}
$$

for some fixed number a (ie. $\lim \frac{2 p_{d}-r_{d}}{\sqrt{r_{d}}}=a$). Then as $d \rightarrow \infty$,

$$
\frac{1}{2^{r_{d}}} \cdot \sqrt{\frac{2 \pi}{r_{d}}} \cdot k_{p_{d}, 1} \longrightarrow e^{-a^{2} / 2}
$$

What about general X, L_{d} ?
One can hope that similar picture holds for $k_{p, q}\left(L_{d}\right)$ for every $q \in[1, n]$.

Conjecture: For each $q \in[1, n]$ there is a function $F(d)$ (depending on X and geometric data) such that

$$
F(d) \cdot k_{p_{d}, q}\left(L_{d}\right) \longrightarrow e^{-a^{2} / 2}
$$

as $d \rightarrow \infty$ and $p_{d} \rightarrow \frac{r_{d}}{2}+a \cdot \frac{\sqrt{r_{d}}}{2}$.

Example. Betti numbers $k_{p, 1}$ of 4 -fold Veronese embedding of \mathbf{P}^{2}.

(Biggest example we could work out exactly on computer.)

Confession: Don't know how to verify Conjecture for any X of dimension $n \geq 2$!
(Ex. What are asymptotics of betti numbers for Veronese embeddings of \mathbf{P}^{2} ??)

Evidence for Conjecture comes from
Probabilistic Picture: For "random resolutions" having syzygies with fixed weights, betti numbers become normally distributed as length of resolution grows.

Ask: What does one mean by "random resolution?"

As model for syzygies of very positive embeddings of varieties of fixed dimension n, consider resolutions of modules M over polynomial rings in $r+1$ variables that have syzygies only in weights $1 \leq q \leq n$.

Eisenbud-Schreyer: Proved conjecture of BoijSöderberg describing (up to scaling) all possible configurations of betti numbers $k_{p, q}(M)$ for M as above.

- Betti tables are (essentially) parametrized up to scaling by numerical parameters

$$
x=\left\{x_{I}\right\} \in[0,1] \begin{gathered}
\binom{r}{n-1}
\end{gathered}
$$

- So get functions

$$
k_{p, q}: \Omega_{r}={ }_{\operatorname{def}}[0,1]^{\binom{r}{n-1}} \longrightarrow \mathbf{R}
$$

describing Betti numbers of formal resolution described by Boij-Söderberg coefficient vector $x \in \Omega_{r}$.

Plan: For fixed $1 \leq q \leq n$, choose $x \in \Omega_{r}$ uniformly at random, and study distribution in p of the formal betti numbers $k_{p, q}(x)$.

Example. Plot of $k_{p, 1}$ for random x with $n=2$ and $r=14$.


```
Example. Plot of \(k_{p, 1}\) for random \(x\) with \(n=2\) and \(r=60\).
```


Theorem C. (Informal Statement). Fix $1 \leq$ $q \leq n$. Then as $r \rightarrow \infty$, for "most" choices of

$$
x \in \Omega_{r}
$$

the formal betti numbers

$$
k_{p, q}(x) \in \mathbf{R}
$$

display the sort of normal distribution (in p) that is predicted by the conjecture.

So at least the Conjecture predicts that "reallife" Betti numbers have typical, rather than exceptional, behavior.

