Percolation, Conformal welding, and SLE

Ilia Binder

University of Toronto

February 23, 2012

Outline

Percolation Critical interface and SLE Cluster boundaries and Conformal welding Multifractal spectrum of harmonic measure

Percolation

Critical interface and SLE

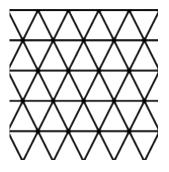
Cluster boundaries and Conformal welding

Cluster boundaries Conformal welding AJKS welding

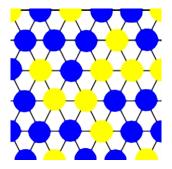
Multifractal spectrum of harmonic measure

Multifractal spectrum: the definition Multifractal spectrum: the computation

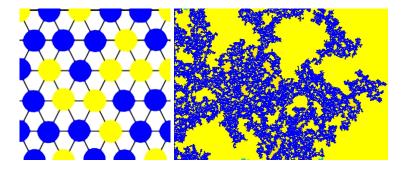
Site percolation on triangular lattice



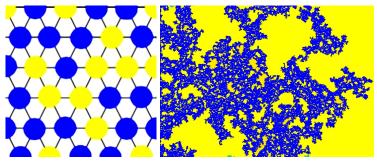
Site percolation on triangular lattice



Site percolation on triangular lattice

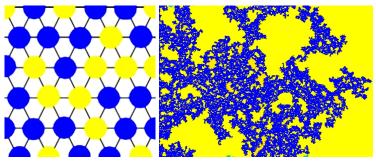


Site percolation on triangular lattice



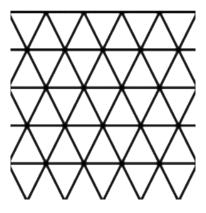
No infinite connected cluster when $p \le 1/2$, always exists with p > 1/2.

Site percolation on triangular lattice

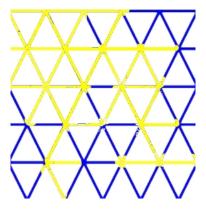


No infinite connected cluster when $p \leq 1/2$, always exists with p > 1/2. $p_c = 1/2$ - critical.

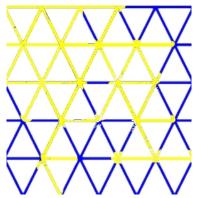
Bond percolation on triangular lattice



Bond percolation on triangular lattice



Bond percolation on triangular lattice



Here $p_c = 2 \sin \pi / 18 \approx 0.35$ (because there is more connectivity!)

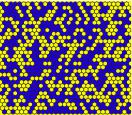
To hexagonal lattice

Hexagonal lattice is dual to triangular lattice:

To hexagonal lattice

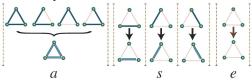
Hexagonal lattice is dual to triangular lattice:

Site percolation: just color hexagons blue/yellow with probability 1/2.



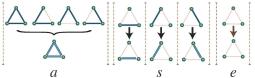
To hexagonal lattice: bond percolation

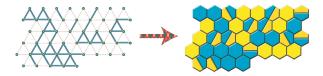
Interested only in connectivity properties, so can group triangles with the same connectivity:



To hexagonal lattice: bond percolation

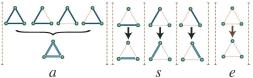
Interested only in connectivity properties, so can group triangles with the same connectivity:

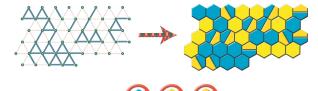




To hexagonal lattice: bond percolation

Interested only in connectivity properties, so can group triangles with the same connectivity:





Not quite symmetric:

Universality

It has been predicted by physicists that at criticality various lattice models, such as *Percolation* and

Ising magnet

Self Avoiding Walk

Universality

It has been predicted by physicists that at criticality various lattice models, such as *Percolation* and

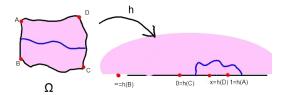
Ising magnet

Self Avoiding Walk

have scaling limits which are conformally invariant and independent of the lattice selected.

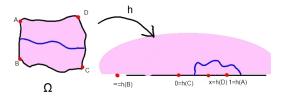
Smirnov-Cardy observable: history

Cardy's observation (1992):



Smirnov-Cardy observable: history

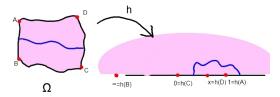
Cardy's observation (1992):



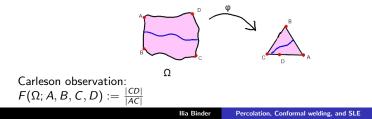
The formula is cumbersome: $F(\Omega; A, B, C, D) := \frac{\int_{0}^{\infty} (s(1-s))^{-2/3} ds}{\int_{0}^{1} (s(1-s))^{-2/3} ds}$

Smirnov-Cardy observable: history

Cardy's observation (1992):



The formula is cumbersome: $F(\Omega; A, B, C, D) := \frac{\int_{0}^{\infty} (s(1-s))^{-2/3} ds}{\int_{0}^{1} (s(1-s))^{-2/3} ds}$

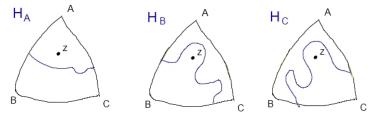


Smirnov-Cardy observable

Smirnov's idea(2000): combinatorial description of the discrete approximation of the mapping ϕ to equilateral triangle.

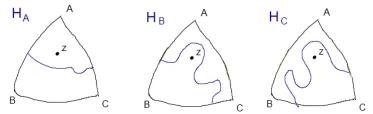
Smirnov-Cardy observable

Smirnov's idea(2000): combinatorial description of the discrete approximation of the mapping ϕ to equilateral triangle.



Smirnov-Cardy observable

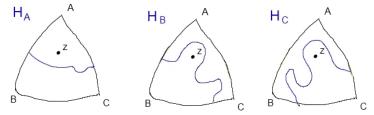
Smirnov's idea(2000): combinatorial description of the discrete approximation of the mapping ϕ to equilateral triangle.



 $H_A(z) + e^{2\pi i} H_B(z) + e^{-2\pi i} H_C(z)$ converge to ϕ .

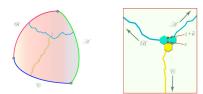
Smirnov-Cardy observable

Smirnov's idea(2000): combinatorial description of the discrete approximation of the mapping ϕ to equilateral triangle.

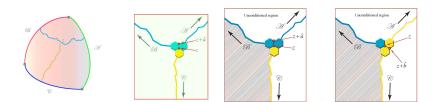


 $H_A(z) + e^{2\pi i} H_B(z) + e^{-2\pi i} H_C(z)$ converge to ϕ . Coincides with Cardy's formula when $z \in \partial \Omega$!

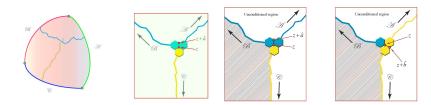
Idea of proof



Idea of proof

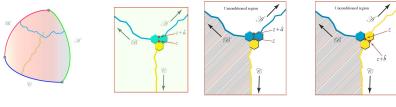


Idea of proof



Does not work for bond percolation

Idea of proof



Does not work for bond percolation:

Modified bond percolation

Introduce flowers and irises.

Modified bond percolation

Introduce flowers and irises.

Rules

- 1. Flowers are disjoint
- 2. Non-irises are blue/yellow with equal probability a.
- 3. Iris can be blue, yellow or split each allowed way with probabilities *a*, *a*, *s* respectively.(2a + 3s = 1)

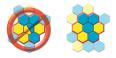
Modified bond percolation

Introduce flowers and irises.

Rules

- 1. Flowers are disjoint
- 2. Non-irises are blue/yellow with equal probability a.
- 3. Iris can be blue, yellow or split each allowed way with probabilities *a*, *a*, *s* respectively.(2a + 3s = 1)

4. In triggering situation iris is no longer iris!



Modified bond percolation

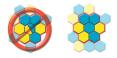
Introduce flowers and irises.

Rules

- 1. Flowers are disjoint
- 2. Non-irises are blue/yellow with equal probability a.
- 3. Iris can be blue, yellow or split each allowed way with probabilities *a*, *a*, *s* respectively.(2a + 3s = 1)

4. In triggering situation iris is no longer iris!

The last rule introduces local correlations.



Modified bond percolation

Introduce flowers and irises.

Rules

- 1. Flowers are disjoint
- 2. Non-irises are blue/yellow with equal probability a.
- 3. Iris can be blue, yellow or split each allowed way with probabilities *a*, *a*, *s* respectively.(2a + 3s = 1)

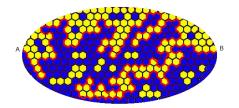
4. In triggering situation iris is no longer iris!

🛞 🔆

The last rule introduces local correlations. Cardy-Smirnov observable still works here!

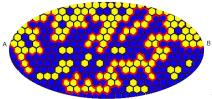
Exploration process and metric on curves

In a simply connected domain Ω with two points A, B on the boundary, color all hexagons on [AB] blue, on [BA] yellow. Then there is unique interface between yellow and blue, a random curve from A to B in Ω . It is called the *exploration process*.



Exploration process and metric on curves

In a simply connected domain Ω with two points A, B on the boundary, color all hexagons on [AB] blue, on [BA] yellow. Then there is unique interface between yellow and blue, a random curve from A to B in Ω . It is called the *exploration process*.

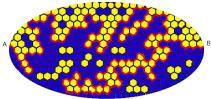


The law of the exploration process

should converge to the limit (a random curve from A to B) and should be conformally invariant.

Exploration process and metric on curves

In a simply connected domain Ω with two points A, B on the boundary, color all hexagons on [AB] blue, on [BA] yellow. Then there is unique interface between yellow and blue, a random curve from A to B in Ω . It is called the *exploration process*.



The law of the exploration process

should converge to the limit (a random curve from A to B) and should be conformally invariant.

For the convergence in law we need metric, which is

$$\mathsf{dist}_U(\gamma_1,\gamma_2) = \inf_{\mathsf{parametrizations of } \gamma_1, \ \gamma_2} \|\gamma_1(t) - \gamma_2(t)\|_{\infty}$$

Löwner Evolution

How to describe a curve in conformally invariant terms?

How to describe a curve in conformally invariant terms? Enough to consider in a canonical domain, say \mathbb{H} , with A = 0, $B = \infty$.

How to describe a curve in conformally invariant terms? Enough to consider in a canonical domain, say \mathbb{H} , with A = 0, $B = \infty$.

Parametrize the curve and consider conformal mapping g_t from $\mathbb{H} \setminus \gamma[0, t]$ back to \mathbb{H} with hydrodynamic normalization at ∞ :

$$g_t(z) = z + \frac{2a(t)}{z} + O(\frac{1}{|z|^2}).$$

Let us re-parametrize the curve so that a(t) = t. Let $\lambda(t) := g_t(\gamma(t)) \in C(\mathbb{R}_+)$.

How to describe a curve in conformally invariant terms? Enough to consider in a canonical domain, say \mathbb{H} , with A = 0, $B = \infty$.

Parametrize the curve and consider conformal mapping g_t from $\mathbb{H} \setminus \gamma[0, t]$ back to \mathbb{H} with hydrodynamic normalization at ∞ :

$$g_t(z) = z + \frac{2a(t)}{z} + O(\frac{1}{|z|^2}).$$

Let us re-parametrize the curve so that a(t) = t. Let $\lambda(t) := g_t(\gamma(t)) \in C(\mathbb{R}_+)$. Löwner equation: $\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \lambda(t)}$.

How to describe a curve in conformally invariant terms? Enough to consider in a canonical domain, say \mathbb{H} , with A = 0, $B = \infty$.

Parametrize the curve and consider conformal mapping g_t from $\mathbb{H} \setminus \gamma[0, t]$ back to \mathbb{H} with hydrodynamic normalization at ∞ :

$$g_t(z) = z + \frac{2a(t)}{z} + O(\frac{1}{|z|^2}).$$

Let us re-parametrize the curve so that a(t) = t. Let $\lambda(t) := g_t(\gamma(t)) \in C(\mathbb{R}_+)$. Löwner equation: $\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \lambda(t)}$. The opposite is almost true: given continuous $\lambda(t)$ the solution to Löwner

The opposite is almost true: given continuous $\lambda(t)$ the solution to Lowner equation gives a conformal map from complement of a "curve".

How to describe a curve in conformally invariant terms? Enough to consider in a canonical domain, say \mathbb{H} , with A = 0, $B = \infty$.

Parametrize the curve and consider conformal mapping g_t from $\mathbb{H} \setminus \gamma[0, t]$ back to \mathbb{H} with hydrodynamic normalization at ∞ :

$$g_t(z) = z + \frac{2a(t)}{z} + O(\frac{1}{|z|^2}).$$

Let us re-parametrize the curve so that a(t) = t. Let $\lambda(t) := g_t(\gamma(t)) \in C(\mathbb{R}_+)$. *Löwner equation:* $\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \lambda(t)}$. The opposite is almost true: given continuous $\lambda(t)$ the solution to Löwner

equation gives a conformal map from complement of a "curve". $\lambda(t)$ is called its *driving function*.

Scaling limit of exploration process γ should satisfy:

- 1. Conformal invariance.
- 2. Domain Markov Property: The law of $\gamma[t + T, \infty)$ is the same as the law of the exploration process in $\Omega \setminus \gamma[0, T]$.

Scaling limit of exploration process γ should satisfy:

- 1. Conformal invariance.
- 2. Domain Markov Property: The law of $\gamma[t + T, \infty)$ is the same as the law of the exploration process in $\Omega \setminus \gamma[0, T]$.

In terms of driving function λ : the law of $\lambda(t + T) - \lambda(T)$ is the same as the law of $\lambda(t)$.

Scaling limit of exploration process γ should satisfy:

- 1. Conformal invariance.
- 2. Domain Markov Property: The law of $\gamma[t + T, \infty)$ is the same as the law of the exploration process in $\Omega \setminus \gamma[0, T]$.

In terms of driving function λ : the law of $\lambda(t + T) - \lambda(T)$ is the same as the law of $\lambda(t)$. This and scale invariance implies that $\lambda(t) = B(\kappa t)$ for some κ . B(t) is the standard Brownian motion started at 0.

Scaling limit of exploration process γ should satisfy:

- 1. Conformal invariance.
- 2. Domain Markov Property: The law of $\gamma[t + T, \infty)$ is the same as the law of the exploration process in $\Omega \setminus \gamma[0, T]$.

In terms of driving function λ : the law of $\lambda(t + T) - \lambda(T)$ is the same as the law of $\lambda(t)$. This and scale invariance implies that $\lambda(t) = B(\kappa t)$ for some κ . B(t) is the standard Brownian motion started at 0.

Definition. (Schramm)

A random curve driven by $B(\kappa t)$ is called SLE_{κ} (Schramm-Löwner Evolution).

Scaling limit of exploration process γ should satisfy:

- 1. Conformal invariance.
- 2. Domain Markov Property: The law of $\gamma[t + T, \infty)$ is the same as the law of the exploration process in $\Omega \setminus \gamma[0, T]$.

In terms of driving function λ : the law of $\lambda(t + T) - \lambda(T)$ is the same as the law of $\lambda(t)$. This and scale invariance implies that $\lambda(t) = B(\kappa t)$ for some κ . B(t) is the standard Brownian motion started at 0.

Definition. (Schramm)

A random curve driven by $B(\kappa t)$ is called SLE_{κ} (Schramm-Löwner Evolution). It is defined in arbitrary simply-connected domain Ω by corresponding conformal map.

Scaling limit of exploration process γ should satisfy:

- 1. Conformal invariance.
- 2. Domain Markov Property: The law of $\gamma[t + T, \infty)$ is the same as the law of the exploration process in $\Omega \setminus \gamma[0, T]$.

In terms of driving function λ : the law of $\lambda(t + T) - \lambda(T)$ is the same as the law of $\lambda(t)$. This and scale invariance implies that $\lambda(t) = B(\kappa t)$ for some κ . B(t) is the standard Brownian motion started at 0.

Definition. (Schramm)

A random curve driven by $B(\kappa t)$ is called SLE_{κ} (Schramm-Löwner Evolution). It is defined in arbitrary simply-connected domain Ω by corresponding conformal map.

Theorem. (Schramm)

A conformally invariant random curve which satisfy domain Markov property is SLE_{κ} for some κ .

Strategy of the proof of convergence of exploration process to SLE_6

Proposed and used by Smirnov and (in slightly different form) by Lawler, Schramm, and Werner.

1. Consider any subsequential limit.

Strategy of the proof of convergence of exploration process to SLE_6

Proposed and used by Smirnov and (in slightly different form) by Lawler, Schramm, and Werner.

- 1. Consider any subsequential limit.
- 2. Show that it is supported on Löwner parameterizable curves.

Strategy of the proof of convergence of exploration process to SLE_6

Proposed and used by Smirnov and (in slightly different form) by Lawler, Schramm, and Werner.

- 1. Consider any subsequential limit.
- 2. Show that it is supported on Löwner parameterizable curves.
- 3. Use Cardy-Smirnov observable to show that the driving function has the law of B(6t).

Scaling limit is supported on Löwner curves

Simple curves are not closed in dist_u-topology.

Scaling limit is supported on Löwner curves

Simple curves are not closed in dist_u-topology.

The limit can be supported on self-touching curves. Not all of them are Löwner parameterizable.

Scaling limit is supported on Löwner curves

Simple curves are not closed in dist_u-topology.

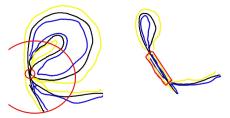
The limit can be supported on self-touching curves. Not all of them are Löwner parameterizable. Two problem cases:



Scaling limit is supported on Löwner curves

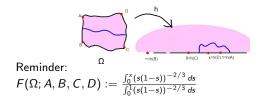
Simple curves are not closed in dist_u-topology.

The limit can be supported on self-touching curves. Not all of them are Löwner parameterizable. Two problem cases:

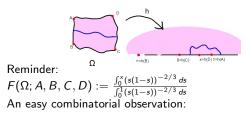


For percolation, both cases can be ruled out by five-arm exponent argument or Cardy's formula.

Smirnov-Cardy observable leads to convergence to SLE₆

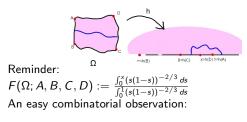


Smirnov-Cardy observable leads to convergence to SLE₆



 $\mathbb{E}\left[F(\Omega \setminus \gamma[0,t],\gamma(t),B,C,D \mid \gamma[0,s])\right] = F(\Omega \setminus \gamma[0,s],\gamma(s),B,C,D \quad t > s$

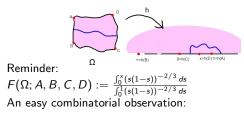
Smirnov-Cardy observable leads to convergence to SLE₆



 $\mathbb{E}\left[F(\Omega \setminus \gamma[0,t],\gamma(t),B,C,D \mid \gamma[0,s])\right] = F(\Omega \setminus \gamma[0,s],\gamma(s),B,C,D \quad t > s$

 $\lambda(t)$ determines x(t): $x(t) = \frac{g_t(D) - g_t(C)}{g_t(A) - g_t(C)}$.

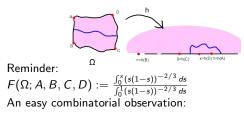
Smirnov-Cardy observable leads to convergence to SLE₆



 $\mathbb{E}\left[F(\Omega \setminus \gamma[0,t],\gamma(t),B,C,D \mid \gamma[0,s])\right] = F(\Omega \setminus \gamma[0,s],\gamma(s),B,C,D \quad t > s$

 $\lambda(t)$ determines x(t): $x(t) = \frac{g_t(D) - g_t(C)}{g_t(A) - g_t(C)}$. *h* at time *t* is simply rescaled g_t .

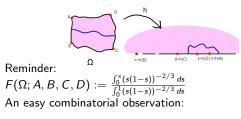
Smirnov-Cardy observable leads to convergence to SLE₆



 $\mathbb{E}\left[F(\Omega \setminus \gamma[0,t],\gamma(t),B,C,D \mid \gamma[0,s])\right] = F(\Omega \setminus \gamma[0,s],\gamma(s),B,C,D \quad t > s$

$$\begin{split} \lambda(t) \text{ determines } x(t): \ x(t) &= \frac{g_t(D) - g_t(C)}{g_t(A) - g_t(C)}. \ h \text{ at time } t \text{ is simply rescaled } g_t. \\ \text{Thus we get: } \mathbb{E}[F(x(t)) \mid x(s)] &= F(x(s)). \end{split}$$

Smirnov-Cardy observable leads to convergence to SLE₆

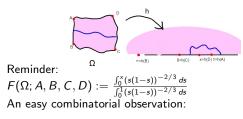


 $\mathbb{E}\left[F(\Omega \setminus \gamma[0,t],\gamma(t),B,C,D \mid \gamma[0,s])\right] = F(\Omega \setminus \gamma[0,s],\gamma(s),B,C,D \quad t > s$

 $\lambda(t)$ determines x(t): $x(t) = \frac{g_t(D) - g_t(C)}{g_t(A) - g_t(C)}$. *h* at time *t* is simply rescaled g_t . Thus we get: $\mathbb{E}[F(x(t)) | x(s)] = F(x(s))$. Now let $B, D \to C$, and asymptotically expand *F* to get

$$\mathbb{E}[\lambda(t) \mid \lambda(s))] = \lambda(s)$$
 $\mathbb{E}[\lambda^2(t) - 6t \mid \lambda(s))] = \lambda^2(s) - 6s$

Smirnov-Cardy observable leads to convergence to SLE₆



 $\mathbb{E}\left[F(\Omega \setminus \gamma[0, t], \gamma(t), B, C, D \mid \gamma[0, s])\right] = F(\Omega \setminus \gamma[0, s], \gamma(s), B, C, D \mid t > s$

 $\lambda(t)$ determines x(t): $x(t) = \frac{g_t(D) - g_t(C)}{g_t(A) - g_t(C)}$. *h* at time *t* is simply rescaled g_t . Thus we get: $\mathbb{E}[F(x(t)) | x(s)] = F(x(s))$. Now let $B, D \to C$, and asymptotically expand *F* to get

$$\mathbb{E}[\lambda(t) \mid \lambda(s))] = \lambda(s)$$
 $\mathbb{E}[\lambda^2(t) - 6t \mid \lambda(s))] = \lambda^2(s) - 6s$

This means that $\lambda(t)$ has law of B(6t).

Results

Theorem. (Smirnov)

In any simply-connected domain Ω , A, $B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for site percolation on triangular lattice converges to SLE_6 from A to B in Ω .

Results

Theorem. (Smirnov)

In any simply-connected domain Ω , A, $B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for site percolation on triangular lattice converges to SLE_6 from A to B in Ω .

Theorem. (B.-Chayes-Lei)

In a simply-connected domain Ω with $\operatorname{Hdim}(\partial \Omega) < 2$, $A, B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for modified bond percolation on triangular lattice converges to SLE_6 from A to B in Ω as long as $a^2 > 2s^2$.

Results

Theorem. (Smirnov)

In any simply-connected domain Ω , A, $B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for site percolation on triangular lattice converges to SLE_6 from A to B in Ω .

Theorem. (B.-Chayes-Lei)

In a simply-connected domain Ω with $\operatorname{Hdim}(\partial \Omega) < 2$, $A, B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for modified bond percolation on triangular lattice converges to SLE_6 from A to B in Ω as long as $a^2 > 2s^2$.

An example of universality.

Results

Theorem. (Smirnov)

In any simply-connected domain Ω , A, $B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for site percolation on triangular lattice converges to SLE_6 from A to B in Ω .

Theorem. (B.-Chayes-Lei)

In a simply-connected domain Ω with $\operatorname{Hdim}(\partial \Omega) < 2$, $A, B \in \partial \Omega$, the exploration process from A to B in $\partial \Omega$ for modified bond percolation on triangular lattice converges to SLE_6 from A to B in Ω as long as $a^2 > 2s^2$.

An example of *universality*. Both restrictions in our theorem are essential.

Other models

$\label{eq:smirnov-Chelkak: Ising model on any isoradial lattice converges to $$\mathsf{SLE}_{8/3}/\mathsf{SLE}_3$.}$

Other models

$\label{eq:smirnov-Chelkak: Ising model on any isoradial lattice converges to $$SLE_{8/3}/SLE_3.$$$

 $\label{eq:lawler-Schramm-Werner: Loop Erased Random Walk converges to SLE_2 \mbox{ on any regular lattice.}$

Other models

$\label{eq:smirnov-Chelkak: Ising model on any isoradial lattice converges to $$SLE_{8/3}/SLE_3.$$$

Lawler-Schramm-Werner: Loop Erased Random Walk converges to SLE_2 on any regular lattice.

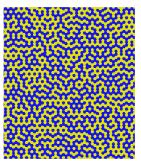
Sheffield-Schramm: Harmonic explorer converges to SLE₄(the proof essentially works on any isoradial lattice (B.-Li)).

Other models

- $\label{eq:sigma} \begin{array}{l} \mbox{Smirnov-Chelkak: Ising model on any isoradial lattice converges to} \\ \mbox{SLE}_{8/3}/\mbox{SLE}_3. \end{array}$
- $\label{eq:lawler-Schramm-Werner: Loop Erased Random Walk converges to SLE_2 \mbox{ on any regular lattice.}$
- Sheffield-Schramm: Harmonic explorer converges to SLE₄(the proof essentially works on any isoradial lattice (B.-Li)).
- Sheffield-Schramm: Level lines of Discrete Gaussian Free Field on any regular lattice converge to SLE₄.

Cluster boundaries Conformal welding AJKS welding

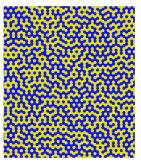
Lattice models: Cluster boundaries



Another natural object related to lattice models: scaling limit of a random cluster boundary.

Cluster boundaries Conformal welding AJKS welding

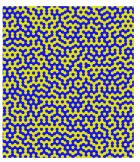
Lattice models: Cluster boundaries



Another natural object related to lattice models: scaling limit of a random cluster boundary. A conformally invariant random loop.

Cluster boundaries Conformal welding AJKS welding

Lattice models: Cluster boundaries

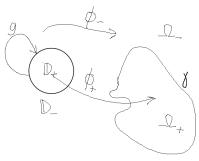


Another natural object related to lattice models: scaling limit of a random cluster boundary. A conformally invariant random loop. Should look like SLE locally.

Can be done through SLE, but there is another natural tool for description of random loops – *Conformal Welding*.

Cluster boundaries Conformal welding AJKS welding

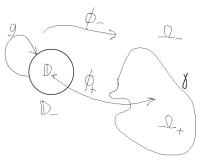
Conformal welding



Let γ be a closed Jordan curve,

Cluster boundaries Conformal welding AJKS welding

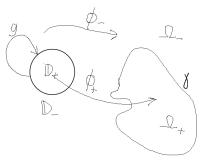
Conformal welding



Let γ be a closed Jordan curve, Ω_{\pm} – its interior (exterior) domains, ϕ_{\pm} -the corresponding conformal maps from the inside (outside) of the unit disk \mathbb{D}_{\pm} with $\phi_{-}(\infty) = \infty$.

Cluster boundaries Conformal welding AJKS welding

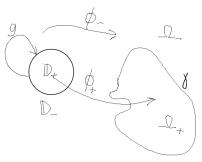
Conformal welding



Let γ be a closed Jordan curve, Ω_{\pm} – its interior (exterior) domains, ϕ_{\pm} -the corresponding conformal maps from the inside (outside) of the unit disk \mathbb{D}_{\pm} with $\phi_{-}(\infty) = \infty$. ϕ_{\pm} are both extendible to the circle.

Cluster boundaries Conformal welding AJKS welding

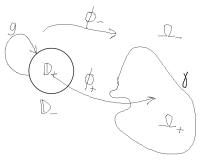
Conformal welding



Let γ be a closed Jordan curve, Ω_{\pm} – its interior (exterior) domains, ϕ_{\pm} -the corresponding conformal maps from the inside (outside) of the unit disk \mathbb{D}_{\pm} with $\phi_{-}(\infty) = \infty$. ϕ_{\pm} are both extendible to the circle. $g = \phi_{-}^{-1} \circ \phi_{+}$ is an orientation-preserving homeomorphism of the circle called *Conformal Welding* corresponding to curve γ .

Cluster boundaries Conformal welding AJKS welding

Conformal welding



Let γ be a closed Jordan curve, Ω_{\pm} – its interior (exterior) domains, ϕ_{\pm} -the corresponding conformal maps from the inside (outside) of the unit disk \mathbb{D}_{\pm} with $\phi_{-}(\infty) = \infty$. ϕ_{\pm} are both extendible to the circle. $g = \phi_{-}^{-1} \circ \phi_{+}$ is an orientation-preserving homeomorphism of the circle called *Conformal Welding corresponding to curve* γ . It is defined up to a Möbius transformation of a circle.

Cluster boundaries Conformal welding AJKS welding

Conformal welding: existence

Opposite problem: given g – an orientation-preserving homeomorphism of the circle, can it be realized as conformal welding?

Cluster boundaries Conformal welding AJKS welding

Conformal welding: existence

Opposite problem: given g – an orientation-preserving homeomorphism of the circle, can it be realized as conformal welding?

Not always.

Cluster boundaries Conformal welding AJKS welding

Conformal welding: existence

Opposite problem: given g – an orientation-preserving homeomorphism of the circle, can it be realized as conformal welding?

Not always. Example:

Cluster boundaries Conformal welding AJKS welding

Conformal welding: existence

Opposite problem: given g – an orientation-preserving homeomorphism of the circle, can it be realized as conformal welding?

Not always. Example:

Theorem. (Ahlfors-Beurling)

Let g be a quasi-symmetric orientation-preserving homeomorphism of the circle, i.e. $\exists K : \forall z, w$,

$$\frac{|g(zw)-g(z)|}{|g(z)-g(zw^{-1})|} \leq K.$$

Then g is the conformal welding for a quasicircle γ (an image of the circle under a quasi-symmetric map).

Cluster boundaries Conformal welding AJKS welding

Conformal welding: existence

Opposite problem: given g – an orientation-preserving homeomorphism of the circle, can it be realized as conformal welding?

Not always. Example:

Theorem. (Ahlfors-Beurling)

Let g be a quasi-symmetric orientation-preserving homeomorphism of the circle, i.e. $\exists K : \forall z, w$,

$$\frac{|g(zw)-g(z)|}{|g(z)-g(zw^{-1})|} \leq K.$$

Then g is the conformal welding for a quasicircle γ (an image of the circle under a quasi-symmetric map).

Way too restrictive for SLE. It can be proven that for them one needs Lehto welding.

Cluster boundaries Conformal welding AJKS welding

Conformal welding: uniqueness

Given g is there a unique (up to a Möbius transformation of the plane) γ ?

Cluster boundaries Conformal welding AJKS welding

Conformal welding: uniqueness

Given g is there a unique (up to a Möbius transformation of the plane) γ ? The same as question of *conformal removability* of γ : given homeomorphism of the plane which is conformal outside of γ , is it necessary a Möbius transformation?

Cluster boundaries Conformal welding AJKS welding

Conformal welding: uniqueness

Given g is there a unique (up to a Möbius transformation of the plane) γ ? The same as question of *conformal removability* of γ : given homeomorphism of the plane which is conformal outside of γ , is it necessary a Möbius transformation? Also no in general. For example, if γ has positive area.

Cluster boundaries Conformal welding AJKS welding

Conformal welding: uniqueness

Given g is there a unique (up to a Möbius transformation of the plane) γ ? The same as question of *conformal removability* of γ : given homeomorphism of the plane which is conformal outside of γ , is it necessary a Möbius transformation? Also no in general. For example, if γ has positive area.

Theorem. (Jones-Smirnov)

If ϕ_+ is Hölder up to the boundary, then γ is conformaly removable.

Cluster boundaries Conformal welding AJKS welding

Conformal welding: uniqueness

Given g is there a unique (up to a Möbius transformation of the plane) γ ? The same as question of *conformal removability* of γ : given homeomorphism of the plane which is conformal outside of γ , is it necessary a Möbius transformation? Also no in general. For example, if γ has positive area.

Theorem. (Jones-Smirnov)

If ϕ_+ is Hölder up to the boundary, then γ is conformaly removable.

Good enough for SLE curves: they are known to be Hölder.

Cluster boundaries Conformal welding AJKS welding

Trace of GFF on unit circle

Let

$$X(e^{2\pi it}) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (A_n \cos(2\pi nt) + B_n \sin(2\pi nt)),$$

where A_n , B_n are independent Standard Gaussians.

Cluster boundaries Conformal welding AJKS welding

Trace of GFF on unit circle

Let

$$X(e^{2\pi i t}) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (A_n \cos(2\pi n t) + B_n \sin(2\pi n t)),$$

where A_n , B_n are independent Standard Gaussians. Not quite a function, but any fractional anti-derivative is a function, covariance is $\mathbb{E}(X(z)X(w)) = \log \frac{1}{|z-w|}$ – same as for planar Gaussian Free Field.

Cluster boundaries Conformal welding AJKS welding

Trace of GFF on unit circle

Let

$$X(e^{2\pi i t}) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (A_n \cos(2\pi n t) + B_n \sin(2\pi n t)),$$

where A_n , B_n are independent Standard Gaussians. Not quite a function, but any fractional anti-derivative is a function, covariance is $\mathbb{E}(X(z)X(w)) = \log \frac{1}{|z-w|}$ – same as for planar Gaussian Free Field. $\frac{1}{2}$ -derivative of Brownian motion.

Cluster boundaries Conformal welding AJKS welding

Trace of GFF on unit circle

Let

$$X(e^{2\pi i t}) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (A_n \cos(2\pi n t) + B_n \sin(2\pi n t)),$$

where A_n , B_n are independent Standard Gaussians. Not quite a function, but any fractional anti-derivative is a function, covariance is $\mathbb{E}(X(z)X(w)) = \log \frac{1}{|z-w|} -$ same as for planar Gaussian Free Field. $\frac{1}{2}$ -derivative of Brownian motion.

Invariant under Möbius transformations of the circle (modulo constants).

Cluster boundaries Conformal welding AJKS welding

AJKS homeomorphism.

Let $\beta > 0$. Define

$$\tau(x) = \int_0^x \exp\left(\beta X(e^{2\pi i t})\right) dt,$$

Cluster boundaries Conformal welding AJKS welding

AJKS homeomorphism.

Let $\beta > 0$. Define

$$\tau(x) = \int_0^x \exp\left(\beta X(e^{2\pi i t})\right) dt,$$

and the homeomorphism g_{β} of the circle by

$$\arg g_{eta}(e^{2\pi i x}) = 2\pi \tau(x)/\tau(1).$$

Cluster boundaries Conformal welding AJKS welding

AJKS homeomorphism.

Let $\beta > 0$. Define

$$\tau(x) = \int_0^x \exp\left(\beta X(e^{2\pi i t})\right) dt,$$

and the homeomorphism g_β of the circle by

$$\arg g_\beta(e^{2\pi i x}) = 2\pi \tau(x)/\tau(1).$$

Theorem. (Astala-Jones-Kupiainen-Saksman) When $\beta < \sqrt{2}$, g_{β} is a.s. a Lehto welding with Hölder ϕ_+ .

Cluster boundaries Conformal welding AJKS welding

AJKS homeomorphism.

Let $\beta > 0$. Define

$$\tau(x) = \int_0^x \exp\left(\beta X(e^{2\pi i t})\right) dt,$$

and the homeomorphism g_{β} of the circle by

$$\arg g_\beta(e^{2\pi i x}) = 2\pi \tau(x)/\tau(1).$$

Theorem. (Astala-Jones-Kupiainen-Saksman) When $\beta < \sqrt{2}$, g_{β} is a.s. a Lehto welding with Hölder ϕ_+ . g_{β} is thus a.s. define a unique (up to a Möbius transformation) loop, which we denote by γ_{β} .

Cluster boundaries Conformal welding AJKS welding

AJKS conjecture

Conjecture. (Astala-Jones-Kupiainen-Saksman)

The law of γ_{β} is locally absolutely continuous with the law of SLE_{κ} , $\kappa = 2\beta^2$.

Cluster boundaries Conformal welding AJKS welding

AJKS conjecture

Conjecture. (Astala-Jones-Kupiainen-Saksman)

The law of γ_{β} is locally absolutely continuous with the law of SLE_{κ} , $\kappa = 2\beta^2$. Moreover, γ_{β} is the scaling limit of cluster boundaries for the corresponding lattice models.

Cluster boundaries Conformal welding AJKS welding

AJKS conjecture

Conjecture. (Astala-Jones-Kupiainen-Saksman)

The law of γ_{β} is locally absolutely continuous with the law of SLE_{κ} , $\kappa = 2\beta^2$. Moreover, γ_{β} is the scaling limit of cluster boundaries for the corresponding lattice models.

Our result (B.-Smirnov):

1. AJKS conjecture is false.

Cluster boundaries Conformal welding AJKS welding

AJKS conjecture

Conjecture. (Astala-Jones-Kupiainen-Saksman)

The law of γ_{β} is locally absolutely continuous with the law of SLE_{κ} , $\kappa = 2\beta^2$. Moreover, γ_{β} is the scaling limit of cluster boundaries for the corresponding lattice models.

Our result (B.-Smirnov):

- 1. AJKS conjecture is false.
- 2. AJKS conjecture can be modified to become plausible:

Cluster boundaries Conformal welding AJKS welding

AJKS conjecture

Conjecture. (Astala-Jones-Kupiainen-Saksman)

The law of γ_{β} is locally absolutely continuous with the law of SLE_{κ} , $\kappa = 2\beta^2$. Moreover, γ_{β} is the scaling limit of cluster boundaries for the corresponding lattice models.

Our result (B.-Smirnov):

- 1. AJKS conjecture is false.
- 2. AJKS conjecture can be modified to become plausible: Let g_{β} , \tilde{g}_{β} be two independent AJKS homeomorphisms. Let $h_{\beta} = g_{\beta}^{-1} \circ \tilde{g}_{\beta}$, and $\tilde{\gamma}_{\beta}$ be the corresponding random curve.

Cluster boundaries Conformal welding AJKS welding

AJKS conjecture

Conjecture. (Astala-Jones-Kupiainen-Saksman)

The law of γ_{β} is locally absolutely continuous with the law of SLE_{κ} , $\kappa = 2\beta^2$. Moreover, γ_{β} is the scaling limit of cluster boundaries for the corresponding lattice models.

Our result (B.-Smirnov):

- 1. AJKS conjecture is false.
- 2. AJKS conjecture can be modified to become plausible: Let g_{β} , \tilde{g}_{β} be two independent AJKS homeomorphisms. Let $h_{\beta} = g_{\beta}^{-1} \circ \tilde{g}_{\beta}$, and $\tilde{\gamma}_{\beta}$ be the corresponding random curve. Then the law of $\tilde{\gamma}_{\beta}$ is locally absolutely continuous with the law of SLE_{κ}, $\kappa = 2\beta^2$.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Multifractal spectrum

 μ – regular probability measure on a metric space.

 $\dim \mu = \inf \{ \operatorname{Hdim} K \mid \mu(K) = 1 \}$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Multifractal spectrum

 μ – regular probability measure on a metric space.

 $\dim \mu = \inf \{ \operatorname{Hdim} K \mid \mu(K) = 1 \}$

Dimension spectrum (non rigorous):

$$dim_{loc}\mu(x) = \lim_{\delta \to 0} \frac{\log \mu(B(x,\delta))}{\log \delta}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Multifractal spectrum

 μ – regular probability measure on a metric space.

 $\dim \mu = \inf \{ \operatorname{Hdim} K \mid \mu(K) = 1 \}$

Dimension spectrum (non rigorous):

$$dim_{loc}\mu(x) = \lim_{\delta \to 0} \frac{\log \mu(B(x, \delta))}{\log \delta}$$

$$f(\alpha) = \operatorname{Hdim}\{x \mid \dim_{\operatorname{loc}} \mu(x) = \alpha\}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Multifractal spectrum

 μ – regular probability measure on a metric space.

 $\dim \mu = \inf \{ \operatorname{Hdim} K \mid \mu(K) = 1 \}$

Dimension spectrum (non rigorous):

$$dim_{loc}\mu(x) = \lim_{\delta \to 0} \frac{\log \mu(B(x,\delta))}{\log \delta}$$

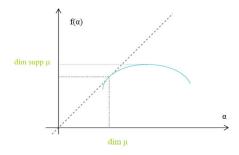
$$f(\alpha) = \operatorname{Hdim}\{x \mid \dim_{\operatorname{loc}} \mu(x) = \alpha\}$$

Dimension spectrum (a version of rigorous):

$$f(lpha) = \lim_{\eta o 0} \dim \left\{ x \mid \exists \delta_j \downarrow 0 : \delta_j^{lpha + \eta} \leq \mu(B(x, \delta_j)) \leq \delta_j^{lpha - \eta}
ight\}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

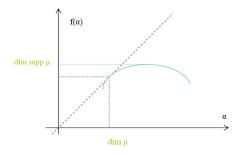
Dimension spectrum: some properties



•
$$f(\alpha) \leq \alpha$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Dimension spectrum: some properties

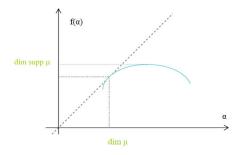


•
$$f(\alpha) \le \alpha$$

• $f(\dim \mu) = \dim \mu$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Dimension spectrum: some properties



- $f(\alpha) \leq \alpha$
- $f(\dim \mu) = \dim \mu$
- $\sup_{\alpha} f(\alpha) = \dim \operatorname{supp} \mu$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Harmonic measure and its spectrum

For a Jordan curve $\gamma,$ let ω_\pm be the images of normalized linear measure on the circle under ϕ_\pm correspondingly.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Harmonic measure and its spectrum

For a Jordan curve γ , let ω_{\pm} be the images of normalized linear measure on the circle under ϕ_{\pm} correspondingly. Probabilistic interpretation: exit distribution of 2D Brownian motion started at $\phi_{\pm}(0)/\infty$ correspondingly.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Harmonic measure and its spectrum

For a Jordan curve γ , let ω_{\pm} be the images of normalized linear measure on the circle under ϕ_{\pm} correspondingly. Probabilistic interpretation: exit distribution of 2D Brownian motion started at $\phi_{\pm}(0)/\infty$ correspondingly. dim_{loc} $\omega_{\pm} = 1 \omega_{\pm}$ a.e. (Makarov)

Multifractal spectrum: the definition Multifractal spectrum: the computation

Harmonic measure and its spectrum

For a Jordan curve γ , let ω_{\pm} be the images of normalized linear measure on the circle under ϕ_{\pm} correspondingly. Probabilistic interpretation: exit distribution of 2D Brownian motion started at $\phi_{+}(0)/\infty$ correspondingly. dim_{loc} $\omega_{\pm} = 1 \ \omega_{\pm}$ a.e. (Makarov) dim_{loc} $\omega_{\pm}(x) \geq 1/2, \ \frac{1}{\dim_{loc}\omega_{+}(x)} + \frac{1}{\dim_{loc}\omega_{-}(x)} \leq 2$ (Beurling)

Multifractal spectrum: the definition Multifractal spectrum: the computation

Harmonic measure and its spectrum

For a Jordan curve γ , let ω_{\pm} be the images of normalized linear measure on the circle under ϕ_{\pm} correspondingly. Probabilistic interpretation: exit distribution of 2D Brownian motion started at $\phi_{\pm}(0)/\infty$ correspondingly. dim_{loc} $\omega_{\pm} = 1 \omega_{\pm}$ a.e. (Makarov) dim_{loc} $\omega_{\pm}(x) \ge 1/2$, $\frac{1}{\dim_{loc} \omega_{+}(x)} + \frac{1}{\dim_{loc} \omega_{-}(x)} \le 2$ (Beurling) Geometric interpretation of local dimension:

$$\dim_{loc} \omega(x) = \pi/\theta.$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Harmonic measure and its spectrum

A

For a Jordan curve γ , let ω_{\pm} be the images of normalized linear measure on the circle under ϕ_{\pm} correspondingly. Probabilistic interpretation: exit distribution of 2D Brownian motion started at $\phi_{\pm}(0)/\infty$ correspondingly. dim_{loc} $\omega_{\pm} = 1 \omega_{\pm}$ a.e. (Makarov) dim_{loc} $\omega_{\pm}(x) \ge 1/2$, $\frac{1}{\dim_{loc}\omega_{+}(x)} + \frac{1}{\dim_{loc}\omega_{-}(x)} \le 2$ (Beurling) Geometric interpretation of local dimension:

$$\begin{split} \dim_{\mathit{loc}} \omega(x) &= \pi/\theta. \\ \pi/\dim_{\mathit{loc}} \omega(x) - \text{generalized angle.} \end{split}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum. But it allows to compute *two-sided multifractal spectrum*.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum. But it allows to compute *two-sided multifractal spectrum*. Not the usual one, unfortunately:

$$f(\alpha, \alpha') = \mathsf{Hdim}\{x \in \gamma \mid \dim_{\mathit{loc}} \omega_+(x) = \alpha, \dim_{\mathit{loc}} \omega_-(x) = \alpha'\}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum. But it allows to compute *two-sided multifractal spectrum*. Not the usual one, unfortunately:

$$f(\alpha, \alpha') = \mathsf{Hdim}\{x \in \gamma \mid \dim_{\mathit{loc}} \omega_+(x) = \alpha, \dim_{\mathit{loc}} \omega_-(x) = \alpha'\}$$

In terms of ω_{\pm} :

$$F(\lambda) = \operatorname{Hdim}_{\omega_{+}} \{ x \in \gamma | \ \frac{\dim_{\operatorname{loc}} \omega_{-}(x)}{\dim_{\operatorname{loc}} \omega_{+}(x)} = \lambda \}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum. But it allows to compute *two-sided multifractal spectrum*. Not the usual one, unfortunately:

$$f(\alpha, \alpha') = \mathsf{Hdim}\{x \in \gamma \mid \dim_{\mathit{loc}} \omega_+(x) = \alpha, \ \dim_{\mathit{loc}} \omega_-(x) = \alpha'\}$$

In terms of ω_{\pm} :

$$F(\lambda) = \operatorname{Hdim}_{\omega_{+}} \{ x \in \gamma | \frac{\dim_{loc} \omega_{-}(x)}{\dim_{loc} \omega_{+}(x)} = \lambda \}$$
$$F(\lambda) = \sup_{\alpha} \left(\frac{f(\alpha, \lambda \alpha)}{\alpha} \right)$$

F

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum. But it allows to compute *two-sided multifractal spectrum*. Not the usual one, unfortunately:

$$f(\alpha, \alpha') = \mathsf{Hdim}\{x \in \gamma \mid \dim_{\mathit{loc}} \omega_+(x) = \alpha, \ \dim_{\mathit{loc}} \omega_-(x) = \alpha'\}$$

In terms of ω_{\pm} :

$$F(\lambda) = \operatorname{Hdim}_{\omega_{+}} \{ x \in \gamma | \frac{\dim_{loc} \omega_{-}(x)}{\dim_{loc} \omega_{+}(x)} = \lambda \}$$

$$F(\lambda) = \sup_{\alpha} \left(\frac{I(\alpha, \lambda \alpha)}{\alpha} \right)$$

In terms of g:

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided multifractal spectrum

Conformal welding does not immediately lead to a computation of dimension spectrum. But it allows to compute *two-sided multifractal spectrum*. Not the usual one, unfortunately:

$$f(\alpha, \alpha') = \mathsf{Hdim}\{x \in \gamma \mid \dim_{\mathit{loc}} \omega_+(x) = \alpha, \dim_{\mathit{loc}} \omega_-(x) = \alpha'\}$$

In terms of ω_{\pm} :

$$F(\lambda) = \operatorname{\mathsf{Hdim}}_{\omega_+} \{ x \in \gamma | \ rac{\dim_{\mathit{loc}} \omega_-(x)}{\dim_{\mathit{loc}} \omega_+(x)} = \lambda \}$$

$$F(\lambda) = \sup_{\alpha} \left(\frac{f(\alpha, \lambda \alpha)}{\alpha} \right)$$

In terms of g: (" $g(\omega_+) = \omega_-$ ")

$$F(\lambda) = \operatorname{Hdim}\left\{ t \in S^1 \mid \lim_{h \to 0} \frac{\log |g(e^{2\pi i(x+h)}) - g(e^{2\pi ix})|}{\log |h|} = \lambda \right\}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc I, $Q(I) := |g_{\beta}(I)|, \omega(I) := |I|.$

AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc I, $Q(I) := |g_{\beta}(I)|, \omega(I) := |I|.$

AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

$$\mathbb{E}[Q^t] \asymp \omega^{p(t)}, \quad p(t) = t(1+rac{eta^2}{2}) - t^2rac{eta^2}{2}.$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc I, $Q(I) := |g_{\beta}(I)|$, $\omega(I) := |I|$. AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

$$\mathbb{E}[Q^t] symp \omega^{p(t)}, \quad p(t) = t(1+rac{eta^2}{2}) - t^2rac{eta^2}{2},$$

Cover the circle by N intervals of length $\omega = \frac{1}{N}$. Choose s so that

$$\mathbb{E}\left[\sum \omega_j^s Q_j^t
ight] symp N^{1-s-
ho(t)} symp 1 \ \Rightarrow \ 1-s-
ho(t) = 0.$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc I, $Q(I) := |g_{\beta}(I)|$, $\omega(I) := |I|$. AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

$$\mathbb{E}[Q^t] \asymp \omega^{
ho(t)}, \quad
ho(t) = t(1+rac{eta^2}{2}) - t^2rac{eta^2}{2}$$

Cover the circle by N intervals of length $\omega = \frac{1}{N}$. Choose s so that

$$\mathbb{E}\left[\sum \omega_j^s \mathcal{Q}_j^t
ight] symp \mathcal{N}^{1-s-p(t)} pprox 1 \ \Rightarrow \ 1-s-p(t)=0.$$

Cover the image circle by N intervals of quantum length $Q = \frac{1}{N}$. Let $\mathbb{E}[\omega^s] \simeq Q^{q(s)}$.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc I, $Q(I) := |g_{\beta}(I)|$, $\omega(I) := |I|$. AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

$$\mathbb{E}[Q^t] \asymp \omega^{
ho(t)}, \quad
ho(t) = t(1+rac{eta^2}{2}) - t^2rac{eta^2}{2}$$

Cover the circle by N intervals of length $\omega = \frac{1}{N}$. Choose s so that

$$\mathbb{E}\left[\sum \omega_j^s Q_j^t\right] \asymp N^{1-s-\rho(t)} \asymp 1 \ \Rightarrow \ 1-s-\rho(t)=0.$$

Cover the image circle by N intervals of quantum length $Q = \frac{1}{N}$. Let $\mathbb{E}[\omega^s] \simeq Q^{q(s)}$.

$$\mathbb{E}\left[\sum \omega_j^s \mathcal{Q}_j^t
ight] symp \mathcal{N}^{1-t-q(s)} symp 1 \ \Rightarrow \ 1-t-q(s)=0$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc *I*, $Q(I) := |g_{\beta}(I)|$, $\omega(I) := |I|$. AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

$$\mathbb{E}[Q^t] symp \omega^{p(t)}, \quad p(t) = t(1+rac{eta^2}{2}) - t^2rac{eta^2}{2}$$

Cover the circle by N intervals of length $\omega = \frac{1}{N}$. Choose s so that

$$\mathbb{E}\left[\sum \omega_j^s Q_j^t
ight] symp N^{1-s-
ho(t)} symp 1 \ \Rightarrow \ 1-s-
ho(t)=0.$$

Cover the image circle by N intervals of quantum length $Q = \frac{1}{N}$. Let $\mathbb{E}[\omega^s] \simeq Q^{q(s)}$.

$$\mathbb{E}\left[\sum \omega_j^s Q_j^t\right] \asymp N^{1-t-q(s)} \asymp 1 \Rightarrow 1-t-q(s) = 0$$

$$q(s) = 1 - p^{-1}(1-s) = rac{1}{2} - rac{1}{eta^2} + \sqrt{\left(rac{1}{2} - rac{1}{eta^2}
ight)^2 + rac{2s}{eta^2}}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: AJKS welding

Notation: For an arc *I*, $Q(I) := |g_{\beta}(I)|$, $\omega(I) := |I|$. AJKS welding is absolutely continuous with respect to log-normal multifractal random measure.

$$\mathbb{E}[Q^t] symp \omega^{p(t)}, \quad p(t) = t(1+rac{eta^2}{2}) - t^2rac{eta^2}{2}$$

Cover the circle by N intervals of length $\omega = \frac{1}{N}$. Choose s so that

$$\mathbb{E}\left[\sum \omega_j^s Q_j^t
ight] symp N^{1-s-
ho(t)} symp 1 \ \Rightarrow \ 1-s-
ho(t) = 0.$$

Cover the image circle by N intervals of quantum length $Q = \frac{1}{N}$. Let $\mathbb{E}[\omega^s] \simeq Q^{q(s)}$.

$$\mathbb{E}\left[\sum \omega_j^s Q_j^t\right] \asymp N^{1-t-q(s)} \asymp 1 \Rightarrow 1-t-q(s) = 0$$

$$q(s) = 1 - p^{-1}(1-s) = rac{1}{2} - rac{1}{eta^2} + \sqrt{\left(rac{1}{2} - rac{1}{eta^2}
ight)^2 + rac{2s}{eta^2}}$$

 $p(t) \neq q(t)$, so the AJKS welding is asymmetric.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: symmetric AJKS welding

Now take \tilde{g}_{β} – a composition of AJKS welding with an inverse of independent AJKS welding.

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: symmetric AJKS welding

Now take \tilde{g}_{β} – a composition of AJKS welding with an inverse of independent AJKS welding.

Cover the "quantum circle" by intervals with quantum lengths $Q_{\pm} = \frac{1}{N}$:

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: symmetric AJKS welding

Now take \tilde{g}_{β} – a composition of AJKS welding with an inverse of independent AJKS welding.

Cover the "quantum circle" by intervals with quantum lengths $Q_{\pm} = \frac{1}{N}$: if q(s) + q(r) = 1, then

$$1 = N^{1-q(s)-q(r)} \asymp \mathbb{E}\left[\sum_{i} (\omega_{j}^{+})^{s} (\omega_{j}^{-})^{r}\right] \ge \mathbb{E}\left[\sum_{\text{support of } F(\lambda)} \dots\right] \asymp N^{F(\lambda)-s-\lambda r}$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: symmetric AJKS welding

Now take \tilde{g}_{β} – a composition of AJKS welding with an inverse of independent AJKS welding.

Cover the "quantum circle" by intervals with quantum lengths $Q_{\pm} = \frac{1}{N}$: if q(s) + q(r) = 1, then

$$\begin{split} 1 &= \textit{N}^{1-q(s)-q(r)} \asymp \mathbb{E}\left[\sum \left(\omega_{j}^{+}\right)^{s}\left(\omega_{j}^{-}\right)^{r}\right] \geq \\ & \mathbb{E}[\sum_{\text{support of } F(\lambda)} \dots] \asymp \textit{N}^{F(\lambda)-s-\lambda r} \end{split}$$

By large deviation principle, $F(\lambda) = \sup\{s + \lambda r \mid 1 = q(s) + q(r)\}.$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two sided spectrum: symmetric AJKS welding

Now take \tilde{g}_{β} – a composition of AJKS welding with an inverse of independent AJKS welding.

Cover the "quantum circle" by intervals with quantum lengths $Q_{\pm} = \frac{1}{N}$: if q(s) + q(r) = 1, then

$$\begin{split} 1 &= \textit{N}^{1-q(s)-q(r)} \asymp \mathbb{E}\left[\sum \left(\omega_{j}^{+}\right)^{s}\left(\omega_{j}^{-}\right)^{r}\right] \geq \\ & \mathbb{E}[\sum_{\text{support of } F(\lambda)} \dots] \asymp \textit{N}^{F(\lambda)-s-\lambda r} \end{split}$$

By large deviation principle, $F(\lambda) = \sup\{s + \lambda r \mid 1 = q(s) + q(r)\}.$

$$F(\lambda) = rac{2}{eta^2}rac{\lambda}{\lambda+1} - (\lambda+1)rac{eta^2}{2}\left(rac{1}{2}-rac{1}{eta^2}
ight)^2$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided spectrum: SLE

Physics prediction:

$$f(\alpha, \alpha') = \frac{25 - c}{12} - \frac{1}{2(1 - \gamma)\left(1 - \frac{1}{2}\left(\frac{1}{\alpha} + \frac{1}{\alpha'}\right)\right)^{-1}} - \frac{1 - c}{24}(\alpha + \alpha').$$

Here $c = \frac{1}{4}(6 - \kappa)(6 - \frac{16}{\kappa}), \ \gamma = 1 - \frac{\kappa}{4}.$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided spectrum: SLE

Physics prediction:

$$f(\alpha, \alpha') = \frac{25 - c}{12} - \frac{1}{2(1 - \gamma)\left(1 - \frac{1}{2}\left(\frac{1}{\alpha} + \frac{1}{\alpha'}\right)\right)^{-1}} - \frac{1 - c}{24}(\alpha + \alpha').$$

Here $c = \frac{1}{4}(6 - \kappa)(6 - \frac{16}{\kappa}), \ \gamma = 1 - \frac{\kappa}{4}.$

$$F(\lambda) = \sup_{\alpha} \left(\frac{f(\alpha, \lambda \alpha)}{\alpha} \right) =$$

$$\sup_{\alpha} \left(\frac{1}{\alpha} \left(1 - \frac{\kappa}{8} - \frac{2}{\kappa} \right) - \frac{8}{\kappa} \left(\alpha - \frac{1}{2} \frac{\lambda + 1}{\lambda} \right)^{-1} + \left(\frac{1}{4} - \frac{\kappa}{16} - \frac{1}{\kappa} \right) (1 + \lambda) \right) =$$

$$\frac{4}{\kappa} \frac{\lambda}{\lambda + 1} + \left(\frac{1}{4} - \frac{\kappa}{16} - \frac{1}{\kappa} \right) (1 + \lambda)$$

Multifractal spectrum: the definition Multifractal spectrum: the computation

Two-sided spectrum: SLE

Physics prediction:

$$f(\alpha, \alpha') = \frac{25 - c}{12} - \frac{1}{2(1 - \gamma)\left(1 - \frac{1}{2}\left(\frac{1}{\alpha} + \frac{1}{\alpha'}\right)\right)^{-1}} - \frac{1 - c}{24}(\alpha + \alpha').$$

Here $c = \frac{1}{4}(6 - \kappa)(6 - \frac{16}{\kappa}), \ \gamma = 1 - \frac{\kappa}{4}.$

$$F(\lambda) = \sup_{\alpha} \left(\frac{f(\alpha, \lambda \alpha)}{\alpha} \right) =$$

$$\sup_{\alpha} \left(\frac{1}{\alpha} \left(1 - \frac{\kappa}{8} - \frac{2}{\kappa} \right) - \frac{8}{\kappa} \left(\alpha - \frac{1}{2} \frac{\lambda + 1}{\lambda} \right)^{-1} + \left(\frac{1}{4} - \frac{\kappa}{16} - \frac{1}{\kappa} \right) (1 + \lambda) \right) =$$

$$\frac{4}{\kappa} \frac{\lambda}{\lambda + 1} + \left(\frac{1}{4} - \frac{\kappa}{16} - \frac{1}{\kappa} \right) (1 + \lambda)$$