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Université Pierre et Marie Curie, Paris

http://philippelefloch.org

AIM of this TALK

§ Global geometry of spacetimes

§ Einstein equations for self-gravitating matter

§ The f pRq-gravity theory

§ Global nonlinear stability of Minkowski spacetime

§ initial data prescribed on a spacelike hypersurface
§ small perturbation of an asymptotically flat slice in Minkowski space

§ Partial differential equations

§ nonlinear wave equations
§ global-in-time solutions in weighted Sobolev spaces



CHALLENGES

§ Gravitational waves

§ waves propagating in a curved space
§ Weyl curvature (vacuum), Ricci curvature (matter)

§ Nonlinear wave interactions

§ exclude dynamical instabilities, self-gravitating massive modes
§ avoid gravitational collapse (trapped surfaces, black holes)

§ Global dynamics

§ (small) perturbations disperse in timelike directions
§ asymptotic convergence to Minkowski spacetime
§ future timelike geodesically complete spacetime

OUTLINE

1. Einstein gravity versus f(R)-gravity

2. The wave-Klein-Gordon formulation

3. The global nonlinear stability

4. Stability theorems in wave coordinates



1. EINSTEIN GRAVITY versus F(R)-GRAVITY

§ Lorentzian manifolds pM, gαβq with signature p´,`,`,`q

§ In (local) coordinates g “ gαβdx
αdxβ

§ Minkowski spacetime M “ R3`1 and gM “ ´pdx
0q2 `

ř3
a“1pdx

aq2

§ Covariant derivative ∇αX “ BαX ` Γ ‹ X with Γ » Bg

§ Ricci curvature Rαβ “ B
2g ` Bg ‹ Bg

§ scalar curvature R :“ Rαα “ gαβRαβ
α, β “ 0, 1, 2, 3 (expressions in coordinates below)

Einstein equations for self-gravitating matter

Gαβ “ 8πTαβ

§ Einstein curvature Gαβ “ Rαβ ´ pR{2qgαβ
§ Tαβ : energy-momentum of the matter field



Self-gravitating massive fields

Massive scalar field with potential Upφq, for instance Upφq “ c2

2 φ
2,

described by the energy-momentum tensor

Tαβ :“ ∇αφ∇βφ´
´1

2
gα

1β1∇α1φ∇β1φ` Upφq
¯

gαβ

Einstein-Klein-Gordon system for the unknown pM, gαβ , φq

Rαβ ´ 8π
´

∇αφ∇βφ` Upφq gαβ

¯

“ 0

lgφ´ U 1pφq “ 0

with lg “ ∇α∇α

(geometric PDE’s, gauge invariance)



Field equations of the f pRq-modified gravity

Generalized Hilbert-Einstein functional

§ action functional
ş

M

´

f pRq ` 16πLrφ, g s
¯

dVg

§ f pRq “ R ` κ
2R

2 ` κ2OpR3q with κ ą 0

§ long history in physics: Weyl 1918, Pauli 1919, Eddington 1924, . . .

§ Local-in-time Cauchy developments

Alternative theories of gravity are relevant

§ new observational data

§ accelerated expansion of the Universe
§ instabilities observed in galaxies

§ gravitation mediated by additional fields

§ without explicitly introducing notions of ’dark matter’



Critical point equation Nαβ “ 8πTαβ

Nαβ “f
1
pRqGαβ ´

1

2

´

f pRq ´ Rf 1pRq
¯

gαβ `
´

gαβ lg ´∇α∇β

¯

`

f 1pRq
˘

§ Fourth-order derivatives of g

§ If f linear, Nαβ reduces to Gαβ .

§ Vacuum Einstein solutions are vacuum f(R)-solutions

Gravity/matter coupling

Energy-momentum tensor of a massive field (Jordan’s coupling)

Tαβ :“ ∇αφ∇βφ´
´1

2
∇γφ∇γφ` Upφq

¯

gαβ

Bianchi identities (geometry) ∇αRαβ “
1
2∇βR

§ imply ∇αGαβ “ 0, but also ∇αNαβ “ 0.

§ Euler equations ∇αTαβ “ 0

§ wave equation lgφ´ U 1pφq “ 0



Numerical evidence

Stability of asymptotically flat matter spacetimes

§ Family of “oscillating soliton stars”

§ suggests a possible instability mechanism for small perturbations of
massive fields

§ Yet massive fields were finally conjectured to be stable in
asymptotically flat spacetimes:

§ Initial phase: the matter tends to collapse.
§ Intermediate phase: below a certain threshold in the mass density,

the collapse slows down.
§ Final phase: dispersion is the main feature of the evolution.

(H. Okawa, V. Cardoso, and P. Pani, 2014)

Asymptotically anti-Sitter (AdS) spacetimes

§ such instabilities are observed ! the effect of gravity is dominant
§ generic (even arbitrarily small) initial data lead to black hole

formation
§ in AdS spacetime, matter is confined and cannot disperse: the

timelike boundary is reached in finite proper time



2. THE WAVE-KLEIN-GORDON FORMULATION

Field equations in coordinates

Einstein equations Gαβ “ 8πTαβ

§ Second-order system with no specific PDE type
§ Wave gauge lgx

γ “ 0

2 gαβ Bβgαγ ´ gαβ Bγgαβ “ 0, γ “ 0, . . . , 3

§ Rαβ » lggαβ Einstein,... Choquet-Bruhat,..., De Turck’s trick for the

Ricci flow

§ Second-order system of 11 nonlinear wave-Klein-Gordon equations

§ Hamiltonian-momentum Einstein’s contraints

Einstein system for a self-gravitating massive field

rlggαβ “Fαβpg , Bgq ´ 8π
`

2BαφBβφ` c2φ2 gαβ
˘

rlgφ´ c2φ “ 0
(see next slide)

§ Quadratic nonlinearities Fαβpg , Bgq ?

§ Null terms: gαβBαuBβu and BαuBβv ´ BβuBαv



Ricci curvature in wave gauge

Rαβ “ BλΓλαβ ´ BαΓλβλ ` ΓλαβΓδλδ ´ ΓλαδΓδβλ

Γλαβ “
1

2
g:
λλ1`

Bαg
:
βλ1 ` Bβg

:
αλ1 ´ Bλ1g

:
αβ

˘

2Rαβ “ ´rlggαβ ` Qαβ ` Pαβ

“ ´gα
1β1Bα1Bβ1gαβ ` Qαβ ` Pαβ

(i) terms satisfying Klainerman’s null condition (good decay in time)

Qαβ : “ gλλ
1

gδδ
1

Bδgαλ1Bδ1gβλ

´ gλλ
1

gδδ
1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

` gλλ
1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

` . . . . . . . . . . . .

(ii) “quasi-null terms” (need again the gauge conditions)

Pαβ :“ ´ 1
2g

λλ1gδδ
1

Bαgδλ1Bβgλδ1 `
1
4g

δδ1gλλ
1

Bβgδδ1Bαgλλ1

Remark: Weak null condition by Lindblad-Rodnianski (2010)



Modified gravity equations Nαβ “ 8πTαβ

§ Theory based on f pRq “ R ` κ
2R

2 ` . . .

§ Fourth-order system with no specific PDE type

§ The augmented formulation in pg :αβ , ρq

§ conformal transformation g:αβ :“ f 1pRg qgαβ

§ set ρ :“ 1
κ
ln f 1pRg q

§ relation between the Ricci curvature tensors of g and g::

R:αβ “ Rαβ ´ 2
`

∇α∇βρ´∇αρ∇βρ
˘

´
`

lgρ` 2gp∇ρ,∇ρq
˘

gαβ

§ leads to a third-order system

§ evolution equation for the scalar curvature taken as an independent
variable (new degree of freedom)

§ Wave coordinates lg:x
α “ 0

§ Second-order system of 12 nonlinear wave-Klein-Gordon equations

§ More involved algebraic structure, and additional constraints



f(R)-gravity for a self-gravitating massive field

rlg:g
:
αβ “Fαβpg

:, Bg :q ´ 8π
`

2e´κρBαφBβφ` c2φ2e´2κρ g :αβ
˘

´ 3κ2BαρBβρ` κOpρ2qg :αβ
rlg:φ´ c2φ “ c2

`

e´κρ ´ 1
˘

φ` κg :
αβ
BαφBβρ

3κ rlg:ρ´ ρ “κOpρ2q ´ 8π
´

g :
αβ
BαφBβφ`

c2

2
e´κρφ2

¯

§ wave gauge conditions g:
αβ

Γ:
λ
αβ “ 0

§ curvature compatibility eκρ “ f 1pRe´κρg:q

§ Hamiltonian and momentum constraints
(propagating from a Cauchy hypersurface)

In the limit κÑ 0 one has g : Ñ g and ρÑ 8π
`

gαβ∇αφ∇βφ`
c2

2 φ
2
˘

Einstein system for a self-gravitating massive field

rlggαβ “Fαβpg , Bgq ´ 8π
`

2BαφBβφ` c2φ2 gαβ
˘

rlgφ´ c2φ “ 0



§ This completes the formulation of the field equations in a PDE form

§ Global existence problem for coupled nonlinear wave equations

Main challenges

§ Not invariant by scaling
§ must rely on fewer symmetries
§ for instance in defining energy-like functionals

§ Coupling wave equations and Klein-Gordon equations
§ drastically different time asymptotic behavior
§ Opt´1

q for wave equations and Opt´3{2
q for Klein-Gordon equations

§ Dependence in f and singular limit f pRq Ñ R

Global existence theory

§ Sufficient decay of interactions in time ?
§ Nonlinear coupling between the geometry and massive matter
§ Leads to strong interactions at the PDE level

§ (almost) sharp L2 time-decay for the metric and matter field
§ (almost) sharp L8 time-decay for the metric and matter field

§ Quasi-null structure of the Einstein equations
§ the null condition is violated
§ no amplification/feedback phenomena



3. THE GLOBAL NONLINEAR STABILITY

Initial value problem for the Einstein equations

§ Initial data set
§ geometry of the initial hypersurface pM0 » R3, g0, k0q
§ matter fields φ0, φ1

§ initial data sets “close to Minkowski”

§ Local existence theory by Choquet-Bruhat 1954
§ globally hyperbolic Cauchy developments

(spacetime determined by the prescribed initial data)
§ existence of maximal developments

Works on vacuum spacetimes or massless matter

§ Christodoulou-Klainerman 1993
§ fully geometric proof, Bianchi identities, geometry of null cones
§ null foliation, maximal foliation, all Killing fields of Minkowski
§ extensions to massless models (same asymptotics and Killing fields)

§ Lindblad-Rodnianski 2010
§ first global existence result in coordinates
§ wave coordinates (despite an “instability” result by Choquet-Bruhat)
§ asymptotically flat foliation, all Killing fields of Minkowski



Recent work on the dynamics of self-gravitating massive matter

LeFloch-Ma 2015

§ does not rely on Minkowski’s scaling field rBr ` tBt
§ asymptotically hyperbolic foliation

§ the Hyperboloidal Foliation Method (LeFloch-Ma, 2014): key of be
able to tackle massive matter fields

§ also provides a simpler proof for the case of massless fields

Decay conditions

§ Positive mass theorem

§ no solution can be exactly Minkowski “at infinity”
§ exactly Schwarzschild outside a spatially compact region
§ more generally, approaching Schwarzschild near space infinity

§ Initial slice: asymptotically Schwarzschild data with ADM mass m

gab “ gS,ab ` Opr´1´δ
q “ δab

´

1` 2m
r

¯

` Opr´1´δ
q

kab “ kS,ab ` Opr´2´δ
q “ Opr´2´δ

q

φ “ Opr´1´δ
q

§ Compare the solution with an interpolation between Minkowki and
Schwarzschild gMS “

`

1` χpr{tqχprqqgM in which χprq “ 0 for
r ď 1{2 and χprq “ 1 for r ě 3{4.



Theorem 1. Nonlinear stability of Minkowski spacetime with self-
gravitating massive fields

Consider the Einstein-massive field system when the initial data set pM0 »

R3, g0, k0, φ0, φ1q is asymptotically Schwarzschild and sufficiently close to
Minkowski data, and satisfies the Einstein constraint equations. Then, the
initial value problem

§ admits a globally hyperbolic Cauchy development,

§ which is foliated by asymptotically hyperbolic hypersurfaces.

§ Moreover, this spacetime is future causally geodesically complete
and asymptotically approaches Minkowski spacetime.

Theorem 2. Nonlinear stability of Minkowski spacetime in f(R)-gravity

Consider the field equations of f pRq-modified gravity when the initial data set
pM0 » R3, g0, k0,R0,R1, φ0, φ1q is asymptotically Schwarzschild and sufficiently
close to Minkowski data, and satisfies the constraint equations of modified grav-
ity. Then, the initial value problem

§ admits a globally hyperbolic Cauchy development,

§ which is foliated by asymptotically hyperbolic hypersurfaces.

§ Moreover, this spacetime is future causally geodesically complete and
asymptotically approaches Minkowski spacetime.



Limit problem κÑ 0

§ relaxation phenomena for the spacetime scalar curvature

§ passing from the second-order wave equation

3κ rlg:ρ´ ρ “ κOpρ2q ´ 8π
´

g :
αβ
BαφBβφ`

c2

2
e´κρφ2

¯

to the purely algebraic equation

ρÑ 8π
`

gαβ∇αφ∇βφ`
c2

2
φ2
˘

Theorem 3. f(R)-spacetimes converge toward Einstein spacetimes

The Cauchy developments of modified gravity in the limit κÑ 0

when the nonlinear function f “ f pRq (the integrand in the
Hilbert-Einstein action) approaches the scalar curvature function R

converge (in every bounded time interval, in a sense specified quantitatively
in Sobolev norms) to Cauchy developments of Einstein’s gravity theory.



4. STABILITY THEOREMS in WAVE COORDINATES

Foliations by asymptotically hyperboloidal hypersurfaces
(capture well the behavior near the light cone)

For simplicity in this presentation, we focus on the interior of the light
cone and, in fact, on the future of a hyperboloid

Foliation expressed in wave coordinates

§ hyperboloids Hs :“
 

pt, xq
L

t ą 0; t2 ´ |x |2 “ s2
(

parametrized by
their hyperbolic radius s ě 1

§ tangent vectors: boosts La :“ xaBt ` tBa for a “ 1, 2, 3

§ data prescribed on Hs0 for some s0 ą 1

Frames

Hyperboloidal frame B0 :“ Bs Ba “
La
t

Change of frame formulas Bα “ Φ
α1

α Bα1 Bα “ Ψ
α1

α Bα1

Tensor components Tαβ “ Tα1β1Φ
α1

α Φβ1

β



Weighted norms associated with the hyperboloidal foliation

Motivation

§ Energy norms based on the translations Bα and Lorentzian boosts La
§ For instance lgMφ “ f implies lgMLaφ “ Laf

§ Good commutator properties on the curved space

The norms

§ On each hypersurface (using the boosts)
`

}u}Hnrss

˘2
:“ sup

a“1,2,3

ÿ

|J|ďn

ż

Hs»R3

|LJau|
2 dx

§ In spacetime (using the translations)

}u}HN rs0,s1s :“ sup
sPrs0,s1s

ÿ

|I |`nďN

›

›BIu
›

›

Hnrss



Global-in-time existence for the initial value problem

§ Initial data prescribed on an asymptotically hyperbolic hypersurface,
identified with Hs0 in our coordinates

§ Energy balance laws between by two hyperboloids

Bootstrap argument

§ total contribution of the interaction terms contributes only a finite
amount to the growth of the total energy

§ time-integrability of the source terms

§ sharp pointwise estimate required to handle strong interaction terms

§ Sobolev inequalities, Hardy inequalities adapted to the hyperboloidal
foliation

§ hierarchy of energy bounds

§ various order of differentiation / growth in s
§ successive improvements of the energy bounds
§ successive applications of sup-norm estimates



Theorem 1. Nonlinear stability of Minkowski spacetime for self-gravitating
massive fields

Consider the Einstein-massive field system in wave coordinates. Given any suf-
ficiently large integer N, there exist constants ε, δ,C0 ą 0 such that for any
asymptotically hyperboloidal initial data set pR3, g 0, k0, φ0, φ1q satisfying Ein-
stein’s Hamiltonian and momentum constraints together with the smallness con-
ditions

}Bc
`

g 0,ab ´ gMS,ab

˘

}HN r1s ` }k0,ab ´ kMS,ab}HN r1s ď ε

}Baφ0, φ0, φ1}HN r1s ď ε

the solution to the Einstein equations exists for all times s ě 1

}Bγ
`

gαβ ´ gMS,αβ

˘

}HN r1,ss ď C0εs
δ

}Bαφ, φ}HN r1,ss ď C0εs
δ`1{2 (high-order energy)

}Bαφ, φ}HN´4r1,ss ď C0εs
δ (low-order energy)

Observations

§ sufficient decay so that the spacetime is future geodesically complete

§ smallness conditions on both g , φ necessary (gravitational collapse)

§ similar theorem for the theory of modified gravity



Notation: σ :“ 8π
`

g:
αβ
BαφBβφ`

c2

2
e´κρφ2

˘

Theorem 3. The singular limit problem for the modified gravity equations

Consider a sequence of initial data sets depending upon κÑ 0, as follows:

}Bc
`

g :0,ab ´ gMS,ab

˘

}HN r1s ` }k
:

0,ab ´ kMS,ab}HN r1s ď ε

}κ1{2 ρ1, κ
1{2 Baρ0, ρ0}HN r1s ` }Baφ0, φ0, φ1}HN r1s ď ε

}ρ1 ´ σ1, Bapρ0 ´ σ0q, κ
´1{2 pρ0 ´ σ0q}HN´2r1s ď ε.

Then, the solutions exist for all times s ě 1 and all κÑ 0, with a constant
C0 independent of κ

}Bγ
`

g :αβ ´ gMS,αβ

˘

}HN r1,ss ď C0εs
δ

}κ1{2Bαρ, ρ}HN r1,ss ` }Bαφ, φ}HN r1,ss ď C0εs
δ`1{2

}κ1{2Bαρ, ρ}HN´4r1,ss ` }Bαφ, φ}HN´4r1,ss ď C0εs
δ

}Bαpρ´ σq, κ
´1{2pρ´ σq}HN´2r1,ss ď C0εs

δ`1{2

}Bαpρ´ σq, κ
´1{2pρ´ σq}HN´6r1,ss ď C0εs

δ



Moreover, if

§ the initial data set
`

g :
pκq
, k
:pκq

, ρ:0
pκq
, ρ:1

pκq
, φ:0

pκq
, φ:1

pκq˘
converges

to some limit
`

g p0q, k
p0q
, ρ
p0q
0 , ρ

p0q
1 , φ

p0q
0 , φ

p0q
1

˘

§ in the norms associated with the uniform bounds above

then the solutions pg :
pκq
, ρ:pκq, φ:pκqq to the system of modified gravity

converge to a solution pg p0q, φp0qq of the Einstein-massive field system
with, in particular, in the HN´2 norm on each compact set in time

ρpκq Ñ Rp0q :“ 8π
´

g p0qαβBαφ
p0qBβφ

p0q `
c2

2
pφp0qq2

¯

as κÑ 0.

Remarks.

§ Fourth-order system vs. second-order system

§ The highest (pN ` 1q-th order) derivatives of the scalar curvature

§ are Opεκ´1{2
q in L2 and may blow-up when κÑ 0

§ while the N–th order derivatives are solely bounded and need not
converge in a strong sense.



ONGOING RESEARCH

Application of the Hyperboloidal Foliation Method

§ A broad class of nonlinear wave-Klein-Gordon systems with strong
interactions and quasi-null nonlinearities

Improve the growing energy estimate by s1{2

§ Sharper energy bounds a la Morawetz
§ Fully geometric construction by Q. Wang in work in progress

Extension to other massive fields

§ Kinetic models (density), Vlasov equa. (collisionless), Boltzmann
equation: work in progress by Fajman, Joudioux, Smulevici

Penrose’s peeling estimates

§ Asymptotics for the spacetime curvature along timelike directions

Penrose’s conjecture, Christodoulou-Klainerman’s theorem

§ Open problem in wave coordinates

§ Our Hyperboloidal Foliation Method provides a possible approach to
establishing the peeling estimates in wave gauge.


