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Theorem. Any plane isometry is a composition

of at most three reflections in lines.
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Theorem. Any plane isometry is a composition

of at most three reflections in lines.

Lemma. A plane isometry is determined by its restriction

to any three non-collinear points. �
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Theorem. Any plane isometry is a composition

of at most three reflections in lines.

Proof of Theorem. Given an isometry:
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Theorem. Any plane isometry is a composition
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Proof of Theorem.
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Theorem. Any plane isometry is a composition

of at most three reflections in lines.

Proof of Theorem.
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Theorem. Any plane isometry is a composition

of at most three reflections in lines.

Proof of Theorem.

A

B

C

f(C)

f(B)

f(A)f

We are done.�
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Theorem. Any plane isometry is a composition

of at most three reflections in lines.

Generalization. Any isometry of a complete simply connected n -space

of constant curvature is a composition of at most n+ 1 reflections in

hyperplanes.
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is a translation

x Rm(x) Rl ◦Rm(x)

m l
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is a translation

x Rm(x) Rl ◦Rm(x)

m l

The decomposition is not unique:
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is a translation

x Rm(x) Rl ◦Rm(x)

m l

The decomposition is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a translation.
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is a translation

x Rl′ ◦Rm′(x)

m′ l′

Rm′(x)

The decomposition is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a translation.
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is a rotation

α
α

β
β
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is a rotation

α
α
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β
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m
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Decomposition of rotation is not unique:
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is a rotation

α
α

β
β

x

Rm(x)

Rl ◦Rm(x)

m

l

Decomposition of rotation is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a rotation

about the intersection point m ∩ l .
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is a rotation

x

Rl′ ◦Rm′(x)

Rm′(x)

m′

l′

Decomposition of rotation is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a rotation

about the intersection point m ∩ l .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

21 3 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

1 3 42
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

3 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

3 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

1

2 = 3

4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

1
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .

3 421
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .

3 421
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .

21 3
4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .

21 3
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .

3 = 2
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .

41
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 2 3 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 2 3 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1

2
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.

Proof of Theorem. By Lemma, any relation can be reduced to a

relation of length ≤ 3 .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.

Proof of Theorem. By Lemma, any relation can be reduced to a

relation of length ≤ 3 .

A composition of odd number of reflections reverses orientation

and cannot be id .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.

Proof of Theorem. By Lemma, any relation can be reduced to a

relation of length ≤ 3 .

A composition of odd number of reflections reverses orientation

and cannot be id .

A composition of two different reflections is not identity. �
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′m′ are as on the

preceding two slides. �

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.

Generalization of Theorem. Any relation among reflections in

hyperplanes of Rn follow

from relations R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ .
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Theorem. Any relation among reflections in lines follow from R2

l
= 1

and Rm ◦Rl = Rm′ ◦Rl′ .
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l
= 1

and Rm ◦Rl = Rm′ ◦Rl′ .

How can this be? The groups are not isomorphic?
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and Rm ◦Rl = Rm′ ◦Rl′ .

How can this be? The groups are not isomorphic?

How does curvature work?
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In the isometry group of the Lobachevsky plane the same is true.

Theorem. Any relation among reflections in lines follow from R2

l
= 1

and Rm ◦Rl = Rm′ ◦Rl′ .

How can this be? The groups are not isomorphic?

How does curvature work?

On sphere everything holds true.
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In the isometry group of the Lobachevsky plane the same is true.

Theorem. Any relation among reflections in lines follow from R2

l
= 1

and Rm ◦Rl = Rm′ ◦Rl′ .

How can this be? The groups are not isomorphic?

How does curvature work?

On sphere everything holds true.

On the projective plane a reflection in line has extra fixed point.
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an involution (i.e., has period 2) and

can be determined by its fixed point set.
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an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

a 7→ 2a− a = a
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.

Correspondence Subspace S ←→ Reflection in S is

the shortest connection between

simple static geometric objects and isometries.
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.

Correspondence Subspace S ←→ Reflection in S is

the shortest connection between

simple static geometric objects and isometries.

Why involutions?



Reflections

Table of Contents 7 / 24

A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.

Correspondence Subspace S ←→ Reflection in S is

the shortest connection between

simple static geometric objects and isometries.

Why involutions? x2 = 1 , and hence

x−1 = x
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.
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the shortest connection between

simple static geometric objects and isometries.

Why involutions? x2 = 1 , and hence

x−1 = x , (xy)−1 = yx



Reflections

Table of Contents 7 / 24

A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.

Correspondence Subspace S ←→ Reflection in S is

the shortest connection between

simple static geometric objects and isometries.

Why involutions? x2 = 1 , and hence

x−1 = x , (xy)−1 = yx , (xyz)−1 = zyx
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A reflection is an isometry (of a metric space) which is

an involution (i.e., has period 2) and

can be determined by its fixed point set.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: an orthogonal sum of n− k copies of this reflection

and k copies of id : R→ R is a reflection of Rn in a k -subspace.

Further generalizations live in hyperbolic spaces, spheres, projective

spaces and other symmetric spaces.

Correspondence Subspace S ←→ Reflection in S is

the shortest connection between

simple static geometric objects and isometries.

Why involutions? x2 = 1 , and hence

x−1 = x , (xy)−1 = yx , (xyz)−1 = zyx , [x, y] = (xy)2 .
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A process of creating foundations for elementary geometry

started with Euclid’s Elements.

Mathematically satisfactory results were achieved in the XXth century.

Three major systems:



Bachmann’s foundations of geometry

Table of Contents 8 / 24

1. David Hilbert’s Foundations of Geometry
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2. Hermann Weil’s Space, Time, Matter
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3. Friedrich Bachmann’s

Construction of Geometry on the notion of reflections
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Objects: a group G generated by a set S of involutions.

Involutions from S = reflections in lines = lines.

Lines are perpendicular iff the reflections commute.

A point = g ◦ h , g, h ∈ S if g ◦ h = h ◦ g . Denote {points} by P .

A point belongs to a line iff the reflections commute.

Three lines are concurrent or parallel

iff the composition of the reflections is a reflection.

Four axioms for Absolute Plane Geometry:

1. Through any two points, one can draw a line.

2. If each of two points lies on two lines,

then either points or lines coincide.

3. If three lines have a common point,

then the composition of the reflections in them is a reflection in a line.

4. If three lines are perpendicular to a line,

then the composition of the reflections in them is a reflection in a line.
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Objects: a group G generated by a set S of involutions.

Involutions from S = reflections in lines = lines.

Lines are perpendicular iff the reflections commute.

A point = g ◦ h , g, h ∈ S if g ◦ h = h ◦ g . Denote {points} by P .

A point belongs to a line iff the reflections commute.

Three lines are concurrent or parallel

iff the composition of the reflections is a reflection.

Four axioms for Absolute Plane Geometry.

Higher dimensions, order and betweenness were out of consideration.
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is a translation:

RB(RA(X))

RA(X)

X

BA

−→
AB = 1

2

−−−−−−−−−→
X RB(RA(X)

−→
AB is half the arrow representing RB ◦RA .

Compare the head to tail addition
−→
AB +

−−→
BC =

−→
AC

to (RC ◦RB) ◦ (RB ◦RA) = RC ◦R
2

B
◦RA = RC ◦RA .
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If T = RB ◦RA , S = RC ◦RB and R2
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= id ,

then S ◦ T = RC ◦RA .

Which isometries are compositions of two reflections?

Any isometry of Rn .

An ordered pair of subspaces (A,B) such that T = RB ◦RA

is an analogue for an arrow representing a translation.

If A ∩B = ∅ , then we can connect them with the shortest arrow and

consider A and B as decorations at the end points.

If A ∩B 6= ∅ , the arrow shrinks to a point decorated with A and B ,

but another arc arrow from A to B helps to specify the order.

A
B
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If T = RB ◦RA , S = RC ◦RB and R2

B
= id ,

then S ◦ T = RC ◦RA .

Which isometries are compositions of two reflections?

Any isometry of Rn .

An ordered pair of subspaces (A,B) such that T = RB ◦RA

is an analogue for an arrow representing a translation.

If A ∩B = ∅ , then we can connect them with the shortest arrow and

consider A and B as decorations at the end points.

If A ∩B 6= ∅ , the arrow shrinks to a point decorated with A and B ,

but another arc arrow from A to B helps to specify the order.

To what extent are the representations non-unique?

Equivalence relation:

(A,B) ∼ (A′, B′) if RB ◦RA = RB′ ◦RA′ .

Problem. Find an explicit description for the equivalence.
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A rotation of a plane is encoded by an ordered pair of lines.

The lines intersect at the center of rotation.

The angle between the lines is half the rotation angle.

α
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The angle between the lines is half the rotation angle.
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Equivalent angle-arrows are obtained by rotations about the vertex.
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Given two rotations, present them by angle-arrows.

By rotating the angle-arrows,

make the second line in the first angle

coinciding with the first line in the second,

so that the angle-arrows are (l,m) and (m,n) .

Erase m and draw an oriented arc from l to n ,
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Given two rotations, present them by angle-arrows.

By rotating the angle-arrows,

make the second line in the first angle

coinciding with the first line in the second,

so that the angle-arrows are (l,m) and (m,n) .

Erase m and draw an oriented arc from l to n ,

i.e., form the ordered angle (l, n) .

C
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Given two rotations, present them by angle-arrows.

By rotating the angle-arrows,

make the second line in the first angle

coinciding with the first line in the second,

so that the angle-arrows are (l,m) and (m,n) .

Erase m and draw an oriented arc from l to n ,

i.e., form the ordered angle (l, n) .

A B

C

l

m

n

C = A+B
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A reflection of the plane in a point is the rotation by π about the point.

π

Therefore it is a composition of reflections in any two orthogonal lines

passing through the point.

l

m

O

Relations involving three reflections, Rl , Rm and RO :

RO = Rm ◦Rl and hence RO ◦Rl ◦Rm = id and RO ◦Rl = Rm .
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A reflection of the plane in a point is the rotation by π about the point.

π

Therefore it is a composition of reflections in any two orthogonal lines

passing through the point.

l

m

O

Furthermore, Rl , Rm and RO , together with id ,

form the Klein group Z/2× Z/2 .
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Indeed!

x Rm(x)

RO(Rm(x))

m

O

l

Rl(Rm(x))

This is a glide reflection!
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x

RO(Rm(x))

O

Rm(x)

m

A decorated arrow for a glide reflection may glide along itself.
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Given two glide reflections, present them by decorated arrows.

The head in the first arrow and tail in the second one

should NOT be decorated with lines.

By gliding the arrows, make the arrow head of the first arrow

coinciding with the arrow tail of the second.

so that the decorated arrows are
−→
lO and

−→
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Draw an oriented arc from l to n
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Given two glide reflections, present them by decorated arrows.

The head in the first arrow and tail in the second one

should NOT be decorated with lines.

By gliding the arrows, make the arrow head of the first arrow

coinciding with the arrow tail of the second.

so that the decorated arrows are
−→
lO and

−→
On .

Draw an oriented arc from l to n and erase O .

l

n

This is a rotation!
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Given two glide reflections, present them by decorated arrows.

The head in the first arrow and tail in the second one

should NOT be decorated with lines.

By gliding the arrows, make the arrow head of the first arrow

coinciding with the arrow tail of the second.

so that the decorated arrows are
−→
lO and

−→
On .

Draw an oriented arc from l to n and erase O .

l

n

Exercise. Find head to tail rules for composing rotation and glide

reflection.
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α
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β
β

x
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m
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Everything like on the plane.
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l

m

A decorated angle-arrow formed by two intersecting lines defines a

rotation of the 3-space about the axis ⊥ to the plane of the lines.
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l

b

a
B

−B

A
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Great circle arrow versus angular displacement vector.
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β
β
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α
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β
β

m
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A decorated arrow presenting a screw displacement is an arrow with two

perpendicular lines at the end points skew to each other.
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perpendicular lines at the end points skew to each other.
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Given two screw displacement, present them by decorated arrows.
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Given two screw displacement, present them by decorated arrows.

Find the common perpendicular for the lines of the arrows.

Find common perpendicular for the tail decoration of the first arrow and

head decoration of the second. Draw an arrow along it connecting the

decorations. Erase old arrows and their common decoration line.
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Given two screw displacement, present them by decorated arrows.

Find the common perpendicular for the lines of the arrows.

Find common perpendicular for the tail decoration of the first arrow and

head decoration of the second. Draw an arrow along it connecting the

decorations. Erase old arrows and their common decoration line.
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Two-fold covering Spin(n)→ SO(n).

An element of Spin(n) is an element T of SO(n) together with a

homotopy class of a path connecting id to T .

If T = RA , where A has codimension two, then the homotopy class of

the path can be encoded in orientation of A.

SO(n) is generated by reflections in codimension two subspaces.
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Types of decorated arrows = types of isometries.

A rotation is presented by an ordered pair of planes or intersecting lines.

A general fact: an orthogonal sum of two isometries is presented by

orthogonal sum of decorated arrows.

The identity map is presented by a decorated arrow consisting of two

coinciding spaces with coinciding decorations.
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