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The functional equation f (P) = g(Q)

Instances of this equation have been studied for centuries:

Abel, 1826: (X + 1) ◦ P = P ◦ Q

Schröder 1871, ..., Yoccoz 1995: λX ◦ P = P ◦ Q

Fatou, Julia, Ritt, 1920’s: f ◦ g = g ◦ f with f , g ∈ C(X )

and many more.

We know all polynomials f ,P, g ,Q such that f ◦ P = g ◦ Q (Ritt, 1922).

But we aren’t close to knowing all solutions in rational functions: the most
general published result is if f , g are polynomials and P,Q ∈ C[X , 1/X ]
are Laurent polynomials (Pakovich, Z 2007).

Today I’ll present all solutions when f , g are polynomials and P,Q are
rational functions (or more generally, meromorphic functions on C), and
give several consequences.
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Schröder 1871, ..., Yoccoz 1995: λX ◦ P = P ◦ Q

Fatou, Julia, Ritt, 1920’s: f ◦ g = g ◦ f with f , g ∈ C(X )

and many more.

We know all polynomials f ,P, g ,Q such that f ◦ P = g ◦ Q (Ritt, 1922).

But we aren’t close to knowing all solutions in rational functions: the most
general published result is if f , g are polynomials and P,Q ∈ C[X , 1/X ]
are Laurent polynomials (Pakovich, Z 2007).

Today I’ll present all solutions when f , g are polynomials and P,Q are
rational functions (or more generally, meromorphic functions on C), and
give several consequences.

1 / 15



The functional equation f (P) = g(Q)

Instances of this equation have been studied for centuries:

Abel, 1826: (X + 1) ◦ P = P ◦ Q
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A dynamics result

Theorem (Ghioca–Tucker–Z, 2008 & 2012): For α, β ∈ C and nonlinear
f , g ∈ C[X ], if the orbits {α, f (α), f (f (α)) . . . } and
{β, g(β), g(g(β)), . . . } have infinite intersection, then f and g have a
common iterate.

Proof sketch:

Writing f k(X ) for the k-th iterate of f , we have f k(α) = g `(β) for
infinitely many pairs (k , `).
For any n,m, the equation f m(X ) = gn(Y ) has infinitely many
solutions X = f k−m(α), Y = g `−n(β).
Every f i (α) and g j(β) lies in the ring R generated by α, β and the
coefficients of f and g .
Hence (Siegel, 1929; Lang, 1960) there are nonconstant Laurent
polynomials P,Q ∈ C[X , 1/X ] such that f m ◦ P = gn ◦ Q.
Solve this for each m, n, then piece together the solutions.

Summary: From dynamics to number theory to F (P) = G (Q) to QED.
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Connection with number theory

Our result: For α, β ∈ C and nonlinear f , g ∈ C[X ], if the orbits
{α, f (α), f (f (α)) . . . } and {β, g(β), g(g(β)), . . . } have infinite
intersection, then f and g have a common iterate.

Reformulate: the set of pairs (m, n) such that (f m(α), gn(β)) lies on the
diagonal X = Y consists of finitely many “arithmetic progressions” (cosets
of cyclic subsemigroups of N2).

This resembles the Mordell–Lang conjecture (proved by Faltings and
Vojta): the intersection of a subvariety V of a (semi-)abelian variety J and
a finitely-generated subgroup G of J(C) consists of finitely many cosets of
subgroups of G .

It also resembles the Skolem–Mahler–Lech theorem: if a1, a2, . . . is a
sequence of complex numbers satisfying a linear recurrence relation, then
the n’s for which an = 0 comprise finitely many arithmetic progressions.
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A common framework

Question: if J is a variety with a subvariety V and a point α ∈ J(C), and
S is a finitely-generated commutative semigroup of endomorphisms of J,
then does the set of s ∈ S for which s(α) ∈ V consist of finitely many
cosets of subsemigroups of S?

Yes if J = A2 and V is a line and S is generated by the maps
(u, v) 7→ (f (u), v) and (u, v) 7→ (u, g(v)) for some nonlinear
f , g ∈ C[X ] (Ghioca, Tucker, Z)
Yes if J is a (semi-)abelian variety and S consists of translations
(Faltings, Vojta)
Yes if J = C∗ × C (Skolem–Mahler–Lech)
Yes in several other situations (Benedetto, Ghioca, Kurlberg, Scanlon,
Tucker, Vojta, Zannier, Z)
No sometimes.

Note that the proofs in the various cases seem completely unrelated, so a
common proof would shed much light. 4 / 15
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Polynomials over the rational numbers

Theorem (Carney–Hortsch–Z)

For any f ∈ Q[X ], the function Q→ Q defined by c 7→ f (c) is at most
6-to-1 outside a finite set.
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This result is best possible:

The “finite set” cannot be avoided: there are polynomials inducing
any prescribed function on any finite set (Lagrange).

The “6” cannot be improved: for f (X ) := (X 3 − X )2,
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(
± 2t − 1
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f (P) = g(Q) and polynomials over the rational numbers

Theorem (Carney–Hortsch–Z) For any f ∈ Q[X ], the function Q→ Q
defined by c 7→ f (c) is at most 6-to-1 outside a finite set.

Proof sketch:

If f is (≥ 7)-to-1 infinitely often, then there are infinitely many
rational points on some subvariety of f (X1) = f (X2) = · · · = f (X7)
which is not contained in any diagonal Xi = Xj (with i 6= j).

This subvariety is a curve, and by Faltings’ theorem (1983) its genus
is 0 or 1.

Equivalently, f ◦ P1 = f ◦ P2 = · · · = f ◦ P7 where the Pi are distinct
(rational or elliptic) functions.

Solve f ◦P = f ◦Q, then deduce full results via Ritt’s results (again!),
determinations of Galois groups of (infinitely many) polynomials,
computations of ranks of elliptic curves, Swan conductors, etc.

6 / 15
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A plausible generalization

Theorem (Mazur, 1977): Any elliptic curve Y 2 = X 3 + aX + b over Q has
at most 16 rational torsion points.

Reformulation: For any nonconstant morphism f : E1 → E2 between
genus-1 curves over Q, the induced map f : E1(Q)→ E2(Q) is at most
16-to-1.

Our result: For any morphism f : A1 → A1 over Q, the induced map
A1(Q)→ A1(Q) is at most 6-to-1 outside a finite set.

Speculation: Perhaps, for any morphism f : V1 → V2 between
d-dimensional varieties over Q, the map f : V1(Q)→ V2(Q) is at most
c(d)-to-1 outside a lower-dimensional locus (“proper Zariski-closed subset
of V2”).
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Square values of polynomials

Theorem (Mazur, 1977): If f (X ) ∈ Q[X ] has degree 3 and no multiple
roots, and f takes at least eight square values on Q, then f takes infinitely
many square values on Q.

Theorem (Bhargava, 2013): For any d ≥ 3, a positive proportion of
squarefree degree-d polynomials in Q[X ] do not take any square values.

Theorem (Faltings, 1983): Any squarefree f (X ) ∈ Q[X ] of degree at least
5 takes only finitely many square values.

Conjecture (Caporaso–Harris–Mazur, 1997): The number of square values
in this result can be bounded solely in terms of deg(f ). (The current world
record for degree 5 polynomials is 321 square values.)
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Common values of two polynomials

Theorem (CDHHJSWWXZ): For f (X ), g(X ) ∈ Q[X ] \Q, the equation
f (X ) = g(Y ) has infinitely many solutions in a number field K is and only
if...

.
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Theorem (CDHHJSWWXZ): For f (X ), g(X ) ∈ Q[X ] \Q, the equation
f (X ) = g(Y ) has infinitely many solutions in a number field K if and only
if f = L ◦ F ◦ `1 and g = L ◦ G ◦ `2 for some L,F ,G , `1, `2 ∈ Q[X ] such
that `i is linear and (perhaps after switching F and G ) either

F = X n and G is either X iH(X )n or X i (X + 1)n−iH(X )n or ...
F = Tn(X ) and G (X )2 − 4 = D(X )H(X )2 with D squarefree of
degree ≤ 6
F = X i (X + 1)j and G = cX i (X + 1)j for some c ∈ Q \ {0, 1}
max(deg(F ), deg(G )) ≤ 16 and F ,G are on an explicit list.

When F = Tn:

We can count the number of corresponding G ∈ Q[X ] with fixed
degree and fixed critical values.
Solutions G ∈ K [X ] of degree N are in bijection with triples (C , σ,P)
where C is a curve/K of genus ≤ 2, σ is a “hyperelliptic involution”
on C , and P ∈ C (K ) satisfies N([P]− [σ(P)]) = 0 in Jac(C ). 9 / 15
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F = Tn(X ) and G (X )2 − 4 = D(X )H(X )2 with D squarefree of
degree ≤ 6

F = X i (X + 1)j and G = cX i (X + 1)j for some c ∈ Q \ {0, 1}
max(deg(F ), deg(G )) ≤ 16 and F ,G are on an explicit list.

Proof: by Faltings’ theorem and Picard’s theorem (see the next slide), the
hypotheses are equivalent to asserting that f ◦ P = g ◦ Q has a solution
with P,Q being nonconstant meromorphic functions on C. So “just” find
all such solutions (which is very difficult).
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Meromorphic functions

An entire function is a function on C given by a power series which
converges everywhere.

A meromorphic function is the ratio of two entire functions.

Theorem (Picard, 1887) For any nonconstant F (X ,Y ) ∈ C[X ,Y ], there
exist nonconstant meromorphic p(t) and q(t) with F (p(t), q(t)) = 0 if and
only if some irreducible factor of F (X ,Y ) defines a curve of genus 0 or 1.

Recall Faltings’ theorem: For any nonconstant F (X ,Y ) ∈ Q[X ,Y ], the
equation F (X ,Y ) = 0 has infinitely many solutions in some number field if
and only if some irreducible factor of F (X ,Y ) defines a curve of genus 0
or 1.

This is one instance of a tremendously fruitful set of analogies between
complex function theory and number theory.
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Value sharing

Theorem (Nevanlinna, 1926): If nonconstant meromorphic functions P(t)
and Q(t) satisfy P−1(αi ) = Q−1(αi ) for five distinct values αi ∈ C, then
P = Q.

A much-studied question: What if P−1(Si ) = Q−1(Ti ) for several pairs
(Si ,Ti ) of finite subsets of C?

Remark: If f ◦ P = g ◦ Q with f , g ∈ C(X ) \ C, then
P−1(f −1(γ)) = Q−1(g−1(γ)) for every γ ∈ C.

Question: Does this account for all pairs (P,Q) such that
P−1(Si ) = Q−1(Ti ) for infinitely many pairs (Si ,Ti ) of finite subsets of C?

Yes if P,Q ∈ C(X ) (Beals–Wetherell–Z, 2009 +...)

Yes if the polynomials
∏

s∈Si (X − s) and
∏

s∈Ti
(X − s) have “few”

critical points (Weiss–Z)
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Value sharing and functional equations

Sample theorem (Weiss–Z): If nonconstant meromorphic functions P(t)
and Q(t) and nonempty finite S ,T ⊂ C satisfy P−1(S) = Q−1(T ), and at
most min(#S ,#T )− 13 complex numbers are critical points of
f (X ) :=

∏
s∈S(X − s) and/or g(X ) :=

∏
s∈T (X − s), then

f (P(t)) =
g(Q(t))

c · g(Q(t)) + d
(∗)

for some c, d ∈ C.

Theorem (CDHHHJSWWXZ): We know all f , g ∈ C[X ] and meromorphic
P,Q satisfying (∗).
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How we solved f (P) = g(Q) in polynomials f , g and
meromorphic P ,Q

By Picard’s theorem and uniqueness of meromorphic parametrizations, the
problem amounts to determining when f (X ) = g(Y ) has a component of
genus 0 or 1.

First classify f , g ∈ C[X ] for which f (X )− g(Y ) is irreducible and defines
a curve of genus ≤ 1.

The genus g of f (X ) = g(Y ) can be expressed in terms of the
factorization types of all f (X )− λ and g(X )− λ in C[X ] (with λ ∈ C).

Use this to determine all numerical plausibilities for the factorization types
of all f (X )− λ, assuming f (X )− g(Y ) irreducible and g ∈ {0, 1}.

Then determine all corresponding polynomials via computations in
fundamental groups, Riemann’s existence theorem, and solutions of
differential equations.
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The reducible case

We cannot immediately resolve the reducible case after solving the
irreducible case, since factors of f (X )− g(Y ) generally cannot be written
in this form. Instead we pass from the decomposable case to the
indecomposable case, using several ingredients including:

Theorem (Hallett–Wells–Xia–Z, building on Fried, 1973; Feit, 1973; Feit,
1980; Müller, 1993; Cassou-Noguès–Couveignes, 1999; Elkies, 2012) We
explicitly know all indecomposable f (X ) ∈ C[X ] for which the Galois
group of f (X )− t over C(t) is neither Sn nor An (where n := deg(f )).

Note: the proof of this Theorem crucially uses consequences of the
classification of finite simple groups.

Corollary: If f , g ∈ C[X ] are indecomposable and f (X )− g(Y ) is reducible
then either g = f ◦ h (with h linear) or deg(f ) = deg(g) ≤ 31 and f , g are
explicitly known.
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Summary

Solutions of instances of f ◦ P = g ◦ Q in polynomials f , g and
meromorphic P,Q have been applied to:

Describing intersections of orbits of complex polynomials
Showing that for f ∈ Q[X ] the function f : Q→ Q is at most 6-to-1
outside a finite set
Finding all f , g ∈ Q[X ] such that f (K ) ∩ g(K ) is infinite for some
number field K
Determining nonempty finite S ,T ⊂ C such that P−1(S) 6= Q−1(T )
for any nonconstant meromorphic P,Q
Solving f −1(U) = g−1(V ) in f , g ∈ C[X ] and infinite compact
U,V ⊂ C (Dinh 2005; Pakovich 2008)
Determining all subvarieties of An having an endomorphism of the
form (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)) where each fi ∈ C[X ] has
degree ≥ 2 (Medvedev–Scanlon, 2013)
and several other topics.
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