How is math used outside academia?

Cathy O’Neil
mathbabe.org
Answers:

• Climate modeling
• Financial modeling
• Medical research
• Biology modeling
• Sports modeling
• Healthcare costs modeling
Answers:

- Cryptography
- Advertising (purchase/click prediction)
- Recommendation engines
- Fraud detection of all kinds
- Geophysics (predicting oil accumulation)
- Defense modeling
Answers:

- Image processing
- Handwriting recognition
- Language recognition
- Materials simulation
- Teacher evaluations
- The h-score for published researchers
But for this talk...

- I’m focusing on predictive models
But for this talk...

- I’m focusing on predictive models
- Is this math?
But for this talk...

- I’m focusing on predictive models
- Is this math?
- What mathematicians in industry do
But for this talk...

• I’m focusing on predictive models
• Is this math?
• What mathematicians in industry do
• Public face of math (besides calculus)
What is a model?

- Something that takes data in
What is a model?

• Something that takes data in
• And a toy model of how things are related
What is a model?

- Something that takes data in
- And a toy model of how things are related
- Gives out prediction
What is a model?

• Something that takes data in
• And a toy model of how things are related
• Gives out prediction
• *Should come with* an evaluation method
What is a model?

• Something that takes data in
• And a toy model of how things are related
• Gives out prediction
• *Should come with* an evaluation method
• Incredibly sensitive to manipulation
Why should you care?

• Models are powerful
Why should you care?

• Models are powerful
• But they are not oracles
Why should you care?

- Models are powerful
- But they are not oracles
- They rely on trust people have of math
Why should you care?

- Models are powerful
- But they are not oracles
- They rely on trust people have of math
- The authority of the inscrutable
Why should you care?

• Models are powerful
• But they are not oracles
• They rely on trust people have of math
• The authority of the inscrutable
• The mathematician as super human
Why you should care

- Conflict of interest or disinterest?
Why you should care

• Conflict of interest or disinterest?
• Largely used to manipulate politics
Why you should care

• Conflict of interest or disinterest?
• Largely used to manipulate politics
• Mathematicians are generally moral
•
Why you should care

- Conflict of interest or disinterest?
- Largely used to manipulate politics
- Mathematicians are generally moral
- We shouldn’t let this happen
Salient properties

- Name
Salient properties

- Name
- Underlying model
Salient properties

- Name
- Underlying model
- Underlying assumptions
Salient properties

- Name
- Underlying model
- Underlying assumptions
- Input/output
Salient properties

- Name
- Underlying model
- Underlying assumptions
- Input/output
- Purported/political goal
Salient properties

- Name
- Underlying model
- Underlying assumptions
- Input/output
- Purported/political goal
- Evaluation method
Salient properties

- Name
- Underlying model
- Underlying assumptions
- Input/output
- Purported/political goal
- Evaluation method
- Gaming potential
Salient properties

- Name
- Underlying model
- Underlying assumptions
- Input/output
- Purported/political goal
- Evaluation method
- Gaming potential
- Reach
Ex 1: VaR

- Name: Value-at-Risk
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
Calculating VaR

• Build a covariance matrix M of log returns of N instruments in your portfolio
Calculating VaR

- Build a covariance matrix M of log returns of N instruments in your portfolio

- Typically with a decay of a few days or weeks - EWMA
Example: EWMA for variance depends on “decay factor”’s

Next, assume we have the current variance estimate as

\[V_{old} = (1 - s) \cdot \sum_i r_i^2 s^i \]

and we have a new return \(r_0 \) to add to the series. Then it’s not hard to show we just want

\[V_{new} = s \cdot V_{old} + (1 - s) \cdot r_0^2. \]
Calculating VaR

- Build a covariance matrix M of log returns of N instruments in your portfolio
- Typically with a decay of a few days or weeks - EWMA
- Starting with N independent normal draws, make them correlated using M
Calculating VaR

• Build a covariance matrix M of log returns of N instruments in your portfolio

• Typically with a decay of a few days or weeks - EWMA

• Starting with N independent normal draws, make them correlated using M

• Calculate PnL based on those log returns
Calculating VaR

• Build a covariance matrix M of log returns of N instruments in your portfolio

• Typically with a decay of a few days or weeks - EWMA

• Starting with N independent normal draws, make them correlated using M

• Calculate PnL based on those log returns

• Do this 1000 times, find 95th or 99th percentile
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
- Underlying assumptions: Normal distributions, consistent correlations
1 day horizon (HY)
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
- Underlying assumptions: Normal distributions, consistent correlations
- Input/output: Daily market data, misaligned time zones, proxies. Single #.
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
- Underlying assumptions: Normal distributions, consistent correlations
- Input/output: Daily market data, misaligned time zones, proxies. Single #.
- Purported/political goal: Risk measurement/ CEO & regulators image
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
- Underlying assumptions: Normal distributions, consistent correlations
- Input/output: Daily market data, misaligned time zones, proxies. Single #.
- Purported/political goal: Risk measurement/ CEO & regulators image
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
- Underlying assumptions: Normal distributions, consistent correlations
- Input/output: Daily market data, misaligned time zones, proxies. Single #.
- Purported/political goal: Risk measurement/CEO & regulators image
- Gaming potential: See Whale, London, among others.
Ex 1: VaR

- Name: Value-at-Risk
- Underlying model: Monte Carlo engine, ranking by P&L loss, percentile
- Underlying assumptions: Normal distributions, consistent correlations
- Input/output: Daily market data, misaligned time zones, proxies. Single #.
- Purported/political goal: Risk measurement/ CEO & regulators image
- Gaming potential: See Whale, London, among others.
- Reach: The entire financial system
Ex 2: VAM

- Name: Value-Added Teacher model
Ex 2: VAM

- Name: Value-Added Teacher model
- Underlying model: How much teacher raised scores vs. expectation
This is called “Counterfactual”

• In other words, the underlying model tries to predict what the score of a given student would be in a “random” class

• Takes into account student-level, classroom-level, and teacher-level attributes

• Hard to know how accurate this is!
Ex 2: VAM

- Name: Value-Added Teacher model
- Underlying model: How much teacher raised scores vs. expectation
- Underlying assumptions: Account for externalities, small errorbars
Short list of sources of errors in VAM

• Need to score test
• Some problems harder than others?
• Some years smarter than others?
• Some tests harder than others?
• Normalized differently for different years
• Correlation of errors
• Model error
• Bayesian “shrinkage”
Accounting for externalities in VAM

- Account for what is “under control”
- Tests better at testing middle than ends
- % of free school lunches very fat tailed
- Summer vacation loss
- “no child left behind” mindset
- Punishes teachers at tough schools
Ex 2: VAM

- **Name**: Value-Added Teacher model
- **Underlying model**: How much teacher raised scores vs. expectation
- **Underlying assumptions**: Account for externalities, small errorbars
- **Input/output**: Student standardized test scores, attributes. Single #
The underlying model

- Linear regression with multiple sub-models
- Opaque correction terms and techniques
- Small samples (by grade, subject, year)
- Lots of missing data
- 14% correlation on NYC teachers
Different grades, same year, same subject
one grade vs. other grade
Ex 2: VAM

- **Name**: Value-Added Teacher model
- **Underlying model**: How much teacher raised scores vs. expectation
- **Underlying assumptions**: Account for externalities, small errorbars
- **Input/output**: Student standardized test scores, attributes. Single #
- **Purported/political goal**: Better teacher/ power, privatization
Ex 2: VAM

- Name: Value-Added Teacher model
- Underlying model: How much teacher raised scores vs. expectation
- Underlying assumptions: Account for externalities, small errorbars
- Input/output: Student standardized test scores, attributes. Single #
- Purported/political goal: Better teacher/ power, privatization
- Evaluation method: **None!**
Ex 2: VAM

- Name: Value-Added Teacher model
- Underlying model: How much teacher raised scores vs. expectation
- Underlying assumptions: Account for externalities, small errorbars
- Input/output: Student standardized test scores, attributes. Single #
- Purported/political goal: Better teacher/ power, privatization
- Evaluation method: None!
- Gaming potential: Cheating, etc. - mostly gamed by administrators
Ex 2: VAM

- Name: Value-Added Teacher model
- Underlying model: How much teacher raised scores vs. expectation
- Underlying assumptions: Account for externalities, small errorbars
- Input/output: Student standardized test scores, attributes. Single #
- Purported/political goal: Better teacher/ power, privatization
- Evaluation method: **None!**
- Gaming potential: Cheating, etc. - mostly gamed by administrators
- Reach: LA, NY, Chicago public school systems...
Ex 3: Credit Scores

- Name: Credit Score
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
- Underlying assumptions: Behavior consistent over time
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
- Underlying assumptions: Behavior consistent over time
- Input/output: Regulated, open to consumers for free 1x per year. Single #
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
- Underlying assumptions: Behavior consistent over time
- Input/output: Regulated, open to consumers for free 1x per year. Single #
- Purported/political goal: Measurement/ buy-in, fear of default, quantification
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
- Underlying assumptions: Behavior consistent over time
- Input/output: Regulated, open to consumers for free 1x per year. Single #
- Purported/political goal: Measurement/ buy-in, fear of default, quantification
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
- Underlying assumptions: Behavior consistent over time
- Input/output: Regulated, open to consumers for free 1x per year. Single #
- Purported/political goal: Measurement/ buy-in, fear of default, quantification
- Gaming potential: Not high
Ex 3: Credit Scores

- Name: Credit Score
- Underlying model: Unknown, but takes into account past paid bills etc.
- Underlying assumptions: Behavior consistent over time
- Input/output: Regulated, open to consumers for free 1x per year. Single #
- Purported/political goal: Measurement/ buy-in, fear of default, quantification
- Gaming potential: Not high
- Reach: National, possibly international
Aside: the death spiral of modeling

- Insurance: pooled risk
Aside: the death spiral of modeling

- Insurance: pooled risk
- Add segmentation/ good health modeling
Aside: the death spiral of modeling

- Insurance: pooled risk
- Add segmentation/ good health modeling
- Lose original goal
Aside: the death spiral of modeling

- Insurance: pooled risk
- Add segmentation/ good health modeling
- Lose original goal
- People who benefit don’t see the problem directly
Aside: the death spiral of modeling

- Insurance: pooled risk
- Add segmentation/ good health modeling
- Lose original goal
- People who benefit don’t see the problem directly
- Same can be said for credit card offers via credit scoring
Aside: the death spiral of modeling

- Insurance: pooled risk
- Add segmentation/ good health modeling
- Lose original goal
- People who benefit don’t see the problem directly
- Same can be said for credit card offers via credit scoring
- In general if someone benefits someone loses
Aside: the death spiral of modeling

• Insurance: pooled risk
• Add segmentation/ good health modeling
• Lose original goal
• People who benefit don’t see the problem directly
• Same can be said for credit card offers via credit scoring
• In general if someone benefits someone loses
• Systematized racism etc.
Aside: the death spiral of modeling

- Insurance: pooled risk
- Add segmentation/ good health modeling
- Lose original goal
- People who benefit don’t see the problem directly
- Same can be said for credit card offers via credit scoring
- In general if someone benefits someone loses
- Systematized racism etc.
- Philosophically, what do we want our culture to be?
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
- Underlying assumptions: Behavior consistent over time, correct ID
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
- Underlying assumptions: Behavior consistent over time, correct ID
- Input/output: Unregulated, could use race, age, whatever
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
- Underlying assumptions: Behavior consistent over time, correct ID
- Input/output: Unregulated, could use race, age, whatever
- Purported/political goal: Measurement/ quantification, skimming $
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
- Underlying assumptions: Behavior consistent over time, correct ID
- Input/output: Unregulated, could use race, age, whatever
- Purported/political goal: Measurement/ quantification, skimming $
- Evaluation method: Death spiral, this time not regulated.
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
- Underlying assumptions: Behavior consistent over time, correct ID
- Input/output: Unregulated, could use race, age, whatever
- Purported/political goal: Measurement/ quantification, skimming $
- Evaluation method: Death spiral, this time not regulated.
- Gaming potential: Not high
-
Ex 4: E-Score

- Name: E-Score (or “buying power” score)
- Underlying model: Unknown; takes into account past google searches etc.
- Underlying assumptions: Behavior consistent over time, correct ID
- Input/output: Unregulated, could use race, age, whatever
- Purported/political goal: Measurement/ quantification, skimming $
- Evaluation method: Death spiral, this time not regulated.
- Gaming potential: Not high
- Reach: International
Ex 4: h-index

- Name: E-Score (or “buying power” score)
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
- Underlying assumptions: papers and citations, and quantity, meaningful
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
- Underlying assumptions: papers and citations, and quantity, meaningful
- Input/output: Academic publishing records, single number
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
- Underlying assumptions: papers and citations, and quantity, meaningful
- Input/output: Academic publishing records, single number
- Purported/political goal: Measurement, self-advancement
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
- Underlying assumptions: papers and citations, and quantity, meaningful
- Input/output: Academic publishing records, single number
- Purported/political goal: Measurement, self-advancement
- Evaluation method: Fields vs. not?
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
- Underlying assumptions: papers and citations, and quantity, meaningful
- Input/output: Academic publishing records, single number
- Purported/political goal: Measurement, self-advancement
- Evaluation method: Fields vs. not?
- Gaming potential: Highly vulnerable
Ex 4: h-index

- Name: E-Score (or “buying power” score)
- Underlying model: max N where there are N papers with N citations
- Underlying assumptions: papers and citations, and quantity, meaningful
- Input/output: Academic publishing records, single number
- Purported/political goal: Measurement, self-advancement
- Evaluation method: Fields vs. not?
- Gaming potential: Highly vulnerable
- Reach: As far as h-score reaches
Others

- Education - who will graduate
- Debt collectors - who will pay
- Political ads - uberpertsonal targeting
- Health and DNA models
Modeling physics vs. people

• There’s a feedback loop for modeling
Modeling physics vs. people

• There’s a feedback loop for modeling
• Sometimes indicates the model is bad
Modeling physics vs. people

• There’s a feedback loop for modeling
• Sometimes indicates the model is bad
• “People models” ≠ “statistical models"
Keep in mind

• You can’t manage what you don’t measure
Keep in mind

- You can’t manage what you don’t measure
- What are we *not* quantifying for each ex?
Keep in mind

• You can’t manage what you don’t measure
• What are we *not* quantifying for each ex?
• Should we be?
Where do we go now?

- Defend math
Where do we go now?

- Defend math
- First step: educate ourselves
Where do we go now?

- Defend math
- First step: educate ourselves
- Anticipate gaming
Where do we go now?

- Defend math
- First step: educate ourselves
- Anticipate gaming
- Require transparent evaluation methods
Where do we go now?

- Defend math
- First step: educate ourselves
- Anticipate gaming
- Require transparent evaluation methods
- Let’s not become economists though
Suggestions

- Referee process for public models
Suggestions

• Referee process for public models
• Effort to make models “simple”
Suggestions

- Referee process for public models
- Effort to make models “simple”
- Effort to educate public

•
Suggestions

• Referee process for public models
• Effort to make models “simple”
• Effort to educate public
• Panels of mathematicians (& others)
•
Suggestions

- Referee process for public models
- Effort to make models “simple”
- Effort to educate public
- Panels of mathematicians (& others)
- Don’t take money from industry for this