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Answers:

• Climate modeling

• Financial modeling

• Medical research

• Biology modeling

• Sports modeling

• Healthcare costs modeling



Answers:

• Cryptography

• Advertising (purchase/click prediction)

• Recommendation engines

• Fraud detection of all kinds

• Geophysics (predicting oil accumulation)

• Defense modeling



Answers:

• Image processing

• Handwriting recognition 

• Language recognition

• Materials simulation

• Teacher evaluations

• The h-score for published researchers
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But for this talk...

• I’m focusing on predictive models

• Is this math?

• What mathematicians in industry do

• Public face of math (besides calculus)



What is a model?

• Something that takes data in

•



What is a model?

• Something that takes data in

• And a toy model of how things are related

•



What is a model?

• Something that takes data in

• And a toy model of how things are related

• Gives out prediction

•



What is a model?

• Something that takes data in

• And a toy model of how things are related

• Gives out prediction

• Should come with an evaluation method

•



What is a model?

• Something that takes data in

• And a toy model of how things are related

• Gives out prediction

• Should come with an evaluation method

• Incredibly sensitive to manipulation
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Why should you care?

• Models are powerful

• But they are not oracles

• They rely on trust people have of math

• The authority of the inscrutable

• The mathematician as super human
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Why you should care

• Conflict of interest or disinterest?

• Largely used to manipulate politics

• Mathematicians are generally moral

• We shouldn’t let this happen
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• Name

• Underlying model

• Underlying assumptions

• Input/output

• Purported/political goal

• Evaluation method

• Gaming potential

• Reach
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Calculating VaR

• Build a covariance matrix M of log returns of N 
instruments in your portfolio

• Typically with a decay of a few days or weeks - 
EWMA

• Starting with N independent normal draws, make 
them correlated using M

• Calculate PnL based on those log returns

• Do this 1000 times, find 95th or 99th percentile



Ex 1:  VaR

• Name: Value-at-Risk

• Underlying model: Monte Carlo engine, ranking by P&L loss, percentile

• Underlying assumptions: Normal distributions, consistent correlations
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Ex 1:  VaR

• Name: Value-at-Risk

• Underlying model: Monte Carlo engine, ranking by P&L loss, percentile

• Underlying assumptions: Normal distributions, consistent correlations

• Input/output: Daily market data, misaligned time zones, proxies. Single #.

• Purported/political goal: Risk measurement/ CEO & regulators image

• Evaluation method: Not hard - extravagant failure in 2008

• Gaming potential: See Whale, London, among others.

• Reach: The entire financial system
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This is called 
“Counterfactual”

• In other words, the underlying model tries 
to predict what the score of a given 
student would be in a “random” class

• Takes into account student-level, 
classroom-level, and teacher-level attributes

• Hard to know how accurate this is!
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Short list of sources of errors in VAM

• Need to score test 

• Some problems harder than others?

• Some years smarter than others?

• Some tests harder than others?

• Normalized differently for different years

• Correlation of errors

• Model error

• Bayesian “shrinkage”



Accounting for externalities in VAM

• Account for what is “under control”

• Tests better at testing middle than ends

• % of free school lunches very fat tailed

• Summer vacation loss

• “no child left behind” mindset

• Punishes teachers at tough schools
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The underlying model

• Linear regression with multiple sub-models

• Opaque correction terms and techniques

• Small samples (by grade, subject, year)

• Lots of missing data

• 14% correlation on NYC teachers
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Ex 2: VAM 

• Name: Value-Added Teacher model

• Underlying model: How much teacher raised scores vs. expectation

• Underlying assumptions: Account for externalities, small errorbars

• Input/output: Student standardized test scores, attributes. Single #

• Purported/political goal: Better teacher/ power, privatization

• Evaluation method: None!

• Gaming potential: Cheating, etc. - mostly gamed by administrators

• Reach: LA, NY, Chicago public school systems...
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Ex 3: Credit Scores 

• Name: Credit Score

• Underlying model: Unknown, but takes into account past paid bills etc.

• Underlying assumptions: Behavior consistent over time

• Input/output: Regulated, open to consumers for free 1x per year. Single #

• Purported/political goal: Measurement/ buy-in, fear of default, quantification 

• Evaluation method: Constant but not public. Example of death spiral.

• Gaming potential: Not high

• Reach: National, possibly international
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Aside: the death spiral of modeling

• Insurance: pooled risk

• Add segmentation/ good health modeling

• Lose original goal

• People who benefit don’t see the problem directly

• Same can be said for credit card offers via credit scoring

• In general if someone benefits someone loses

• Systematized racism etc.

• Philosophically, what do we want our culture to be?
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Ex 4: E-Score

• Name: E-Score (or “buying power” score)

• Underlying model: Unknown; takes into account past google searches etc.

• Underlying assumptions: Behavior consistent over time, correct ID

• Input/output: Unregulated, could use race, age, whatever 

• Purported/political goal: Measurement/ quantification, skimming $

• Evaluation method: Death spiral, this time not regulated.

• Gaming potential: Not high

• Reach: International
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Ex 4: h-index

• Name: E-Score (or “buying power” score)

• Underlying model: max N where there are N papers with N citations

• Underlying assumptions: papers and citations, and quantity, meaningful

• Input/output: Academic publishing records, single number

• Purported/political goal: Measurement, self-advancement

• Evaluation method: Fields vs. not?

• Gaming potential: Highly vulnerable

• Reach:  As far as h-score reaches



Others

• Education - who will graduate

• Debt collectors - who will pay

• Political ads - uberpersonal targeting

• Health and DNA models
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Modeling physics vs. people

• There’s a feedback loop for modeling

• Sometimes indicates the model is bad

• “People models” = “statistical models"
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Keep in mind

• You can’t manage what you don’t measure

• What are we not quantifying for each ex?

• Should we be?
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Where do we go now?

• Defend math

• First step: educate ourselves

• Anticipate gaming

• Require transparent evaluation methods

• Let’s not become economists though
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Suggestions

• Referee process for public models

• Effort to make models “simple”

• Effort to educate public

• Panels of mathematicians (& others)

• Don’t take money from industry for this


