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Vanishing properties ofMg,k

The moduli spacesMg,k of smooth genus g Riemann surfaces
with punctures have curious vanishing properties.

Diaz’ theorem (1986):
There does not exist a complete (complex) cycle inMg of
dimension greater than g − 2

Note, that is the upper bound. The know constructions give
complete cycles of dimension of order log3 g, only.

Looijenga theorem (1995):
The tautological ring R∗(Mg,k ) vanishes in dimensions
greater then g − 2 + k

The tautological ring R∗(Mg,k ) is generated by classes

ψi = c1(Li), κi = p∗(ψi+1
1 ) ∈ H∗(Mg).

Here Lj are canonical line bundles overMg,k .
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Faber’s conjecture

Diaz, Loojinga, Ionel, Roth-Vakil theorems are incarnations
of vanishing part of Faber conjecture
Faber conjectured (1999) that:
R∗(Mg,k ) looks "like" the cohomology ring of a compact
complex variety of dimension g − 2 + k
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Conjectural geometric explanations

Widely accepted by experts "geometric explanation" of
vanishing properties ofMg,k is the existence of its stratification
by certain number of affine strata or the existence of a cover of
Mg,k by certain number of open affine sets.

Historically, Arbarello first realized that a stratification ofMg
could be useful for a study of its geometrical properties. He
studied the stratification (known already for Rauch)

W2 ⊂ W3 ⊂ · · · ⊂ Wg−1 ⊂ Wg =Mg ,

whereWn if the locus of curves having a Weierstrass point of
order at most n, and then conjectured thatWn \Wn−1 is affine.
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Alternative geometric explanation

Recently, the author jointly with S. Grushevsky proposed an
alternative approach for geometrical explanation of the
vanishing properties ofMg,k motivated by certain constructions
of the Whitham perturbation theory of integrable systems. The
key elements of the alternative geometrical explanation are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with the fixed nα-jets of local
coordinates in the neighborhoods of labeled points is the
total space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;
onM( n )

g, k there is an ordered set of (dimR L) continuous
functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.

Integrable systems and algebraic geometry



Introduction and motivations
Results and work in progress

Tools

Alternative geometric explanation

Recently, the author jointly with S. Grushevsky proposed an
alternative approach for geometrical explanation of the
vanishing properties ofMg,k motivated by certain constructions
of the Whitham perturbation theory of integrable systems. The
key elements of the alternative geometrical explanation are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with the fixed nα-jets of local
coordinates in the neighborhoods of labeled points is the
total space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;
onM( n )

g, k there is an ordered set of (dimR L) continuous
functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.

Integrable systems and algebraic geometry



Introduction and motivations
Results and work in progress

Tools

Alternative geometric explanation

Recently, the author jointly with S. Grushevsky proposed an
alternative approach for geometrical explanation of the
vanishing properties ofMg,k motivated by certain constructions
of the Whitham perturbation theory of integrable systems. The
key elements of the alternative geometrical explanation are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with the fixed nα-jets of local
coordinates in the neighborhoods of labeled points is the
total space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;
onM( n )

g, k there is an ordered set of (dimR L) continuous
functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.

Integrable systems and algebraic geometry



Introduction and motivations
Results and work in progress

Tools

Results and conjectures

Proof of Arbarello’s conjecture

Theorem
Any compact complex cycle inMg of dimension g − n must
intersectWn.

New upper bound for dimensions of complete (complex)
cycles in the moduli spaceMct

g of stable curves of
compact type.

Conjecture

There do not exist complete complex subvarieties ofMct
g

having non empty intersection withMg of dimension greater
than g − 1.
For g ≥ 2 the maximum dimension of complete complex
subvarieties inMct

g is 3
2 g − 2.
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Previously known bounds

Diaz:
there is no compact cycle inMct

g of dimension greater that
2g − 3.
Keel and Sadun:
for g ≥ 3 there do not exist complete complex subvarieties
ofMct

g of dimension greater than 2g − 4.

The proof is by easy induction arguments starting from the
base g = 3. The proof of the base statement is a corollary of
remarkable vanishing result:

there do not exist a complete complex subvarieties of the
moduli space Ag of principally polarized abelian varieties
of codimension g.
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Real normalized differentials

The foliation structure arises through identification ofM( n )
g, k with

the moduli space of curves with fixed real-normalized
meromorphic differential. By definition a real normalized
meromorphic differential is a differential whose periods over
any cycle on the curve are real. The power of this notion is that:

Lemma
For any fixed singular parts of poles with pure imaginary
residues, there exists a unique meromorphic differential Ψ,
having prescribed singular part at pα and such that all its
periods on Γ are real, i.e.

=
(∮

c
Ψ

)
= 0, ∀ c ∈ H1(Γ,Z).
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Foliation

Definition

A leaf L of the foliation onM( n )
g, k defined to be the locus along

which the periods of the corresponding differentials remain
(covariantly) constant.

The leaves L of the foliation can be regarded as a
generalization of the Hurwitz spaces of P1 covers.

It is basic fact of the Whitham theory:

Theorem (Kr-Phong 1995)

A leaf L is a smooth complex subvariety of real codimension
2g.
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Coordinates along a leaf

A set of holomorphic coordinates onM( n )
g, k are "critical" values

of the corresponding abelian integral F (p) = c +
∫ p

Ψ, p ∈ Γ:

At the generic point, where zeros qs of Ψ are distinct, the
coordinates on L are the evaluation of F at these critical points:

ϕs = F (qs), Ψ(qs) = 0, s = 0, . . . ,d = dimL, (1)

normalized by the condition
∑

s ϕs = 0.
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A direct corollary of the real normalization is the statement that:

imaginary parts fs = =ϕs of the critical values depend only
on labeling of the critical points

They can be arranged into decreasing order

f0 ≥ f1 ≥ · · · ≥ fd−1 ≥ fd .

After that fj can be seen as a well-defined continuous function
onM( n )

g, k , which restricted onto L is a piecewise harmonic
function. Moreover, f0 restricted onto L is a subharmonic
function, i.e, f0 has no local maximum on unless it is constant.
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Diaz’ theorem revisited

Let X be a complete cycle inMg and Z be its preimage under
the forgetfull map: Mg,2 ⊂ C2

g 7−→Mg .
→ On Z the function f0 (defined by critical values of
real-normalized differential with two simple poles) must achieve
its maximum at some point.
→ At this point the function f0 achieves its maximum on Z ∩ L.
→ Hence, it is a constant on Z ∩ L.
→ If f0 is a constant then (inductively) all the other functions fj
are constants.
→ Then, Z ∩ L is at most zero-dimensional, i.e. Z intersects L
transversally.
→ dim X ≤ g − 2
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It was tempting to use differentials with one pole (second kind)
for the proof of Arbarello’s conjecture.

Additional difficulty: the space of singular parts of
real-normalized differentials is non-compact.
Tool, which allows to overcome the difficulty: cycles dual to
critical points
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Cusps of plane curves.

Classical problem: What is the maximum number s(d) of
cusps on degree d plane curve ?

Plane curves of degree d are defined by the equation∑
i+j≤d

αijw iz j = 0

Expected answer: s(d)exp = d(d + 1)/4
Hirano and Kulikov constructed a families of curves with large
number of cusps that give

sup lim
d→∞

s(d)

d2 ≥
9

32
,

sup lim
d→∞

s(d)

d2 ≥
283
960

' 0.2948

respectively.
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Upper bound

Until recently the best upper bound was obtained by Hirzebruch

s(d) ≤ 5
16

d2 − 3
8

d ' 0.3125d2 + O(d)

In 2004 Lander using generalization of
Bogomolov-Miyaoka-Yau inequality proved

s(d) ≤ 125 +
√

73
432

d2 ' 0.309d2

0.2948 ≤ sup lim
d→∞

s(d)

d2 ≤ 0.3091
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Ongoing project with Grushevsky

Problem arizen in a study of singularities of solution of the
Whitham equations:

What is the maximal number of common zeros of two real
normalized differentials having fixed orders of poles?

Conjecture (Theorem ? (Grushevsky-Kr))
Two real normalized meromorphic differentials with d > 1 poles
of order 2 on a smooth genus g algebraic curve can not have
more that 3

2(g + d − 1) common zeros.

• Corollary

s(d) ≤ 3
10

d(d − 1)
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