Real normalized differentials and geometry of the moduli spaces of Riemann surfaces with points

I.Krichever

Columbia University

March 1, 2012 / Stony Brook

Vanishing properties of $\mathcal{M}_{g, k}$

The moduli spaces $\mathcal{M}_{g, k}$ of smooth genus g Riemann surfaces with punctures have curious vanishing properties.

- Diaz' theorem (1986):

There does not exist a complete (complex) cycle in \mathcal{M}_{g} of dimension greater than $g-2$
Note, that is the upper bound. The know constructions give complete cycles of dimension of order $\log _{3} g$, only.

- Iooiienga theorem (1995)

The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ vanishes in dimensions greater then $g-2+k$

The tautological ring $R^{*}\left(\Lambda_{g, k}\right)$ is generated by classes

Vanishing properties of $\mathcal{M}_{g, k}$

The moduli spaces $\mathcal{M}_{g, k}$ of smooth genus g Riemann surfaces with punctures have curious vanishing properties.

- Diaz' theorem (1986):

There does not exist a complete (complex) cycle in \mathcal{M}_{g} of dimension greater than g - 2
Note, that is the upper bound. The know constructions give complete cycles of dimension of order $\log _{3} g$, only.

- Looijenga theorem (1995).

The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ vanishes in dimensions greater then $g-2+k$

The tautological ring $R^{*}\left(\Lambda_{g, k}\right)$ is generated by classes

Vanishing properties of $\mathcal{M}_{g, k}$

The moduli spaces $\mathcal{M}_{g, k}$ of smooth genus g Riemann surfaces with punctures have curious vanishing properties.

- Diaz' theorem (1986):

There does not exist a complete (complex) cycle in $\mathcal{M g}_{g}$ of dimension greater than g - 2
Note, that is the upper bound. The know constructions give complete cycles of dimension of order $\log _{3} g$, only.

- Looijenga theorem (1995)

The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ vanishes in dimensions greater then $g-2+k$

The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ is generated by classes

Vanishing properties of $\mathcal{M}_{g, k}$

The moduli spaces $\mathcal{M}_{g, k}$ of smooth genus g Riemann surfaces with punctures have curious vanishing properties.

- Diaz' theorem (1986):

There does not exist a complete (complex) cycle in $\mathcal{M g}_{g}$ of dimension greater than $g-2$
Note, that is the upper bound. The know constructions give complete cycles of dimension of order $\log _{3} g$, only.

- Looijenga theorem (1995):

The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ vanishes in dimensions greater then $g-2+k$
The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ is generated by classes

Vanishing properties of $\mathcal{M}_{g, k}$

The moduli spaces $\mathcal{M}_{g, k}$ of smooth genus g Riemann surfaces with punctures have curious vanishing properties.

- Diaz' theorem (1986):

There does not exist a complete (complex) cycle in $\mathcal{M g}_{g}$ of dimension greater than g - 2
Note, that is the upper bound. The know constructions give complete cycles of dimension of order $\log _{3} g$, only.

- Looijenga theorem (1995):

The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ vanishes in dimensions greater then $g-2+k$
The tautological ring $R^{*}\left(\mathcal{M}_{g, k}\right)$ is generated by classes

$$
\psi_{i}=c_{1}\left(L_{i}\right), \quad \kappa_{i}=p_{*}\left(\psi_{1}^{i+1}\right) \in H^{*}\left(\mathcal{M}_{g}\right)
$$

Here L_{j} are canonical line bundles over $\mathcal{M}_{g, k_{j}}$.

Faber's conjecture

- Diaz, Loojinga, lonel, Roth-Vakil theorems are incarnations of vanishing part of Faber conjecture
- Faber conjectured (1999) that: $R^{*}\left(\mathcal{M}_{g, k}\right)$ looks "like" the cohomology ring of a compact complex variety of dimension $g-2+k$

Faber's conjecture

- Diaz, Loojinga, lonel, Roth-Vakil theorems are incarnations of vanishing part of Faber conjecture
- Faber conjectured (1999) that:
$R^{*}\left(\mathcal{M}_{g, k}\right)$ looks "like" the cohomology ring of a compact complex variety of dimension $g-2+k$

Conjectural geometric explanations

Widely accepted by experts "geometric explanation" of vanishing properties of $\mathcal{M}_{g, k}$ is the existence of its stratification by certain number of affine strata or the existence of a cover of $\mathcal{M}_{g, k}$ by certain number of open affine sets.

Historically, Arbarello first realized that a stratification of \mathcal{M}_{g}
could be useful for a study of its geometrical properties. He studied the stratification (known already for Rauch)
where \mathcal{W}_{n} if the locus of curves having a Weierstrass point of order at most n, and then conjectured that $\mathcal{W}_{n} \backslash \mathcal{W}_{n-1}$ is affine.

Conjectural geometric explanations

Widely accepted by experts "geometric explanation" of vanishing properties of $\mathcal{M}_{g, k}$ is the existence of its stratification by certain number of affine strata or the existence of a cover of $\mathcal{M}_{g, k}$ by certain number of open affine sets.
Historically, Arbarello first realized that a stratification of \mathcal{M}_{g} could be useful for a study of its geometrical properties. He studied the stratification (known already for Rauch)

$$
\mathcal{W}_{2} \subset \mathcal{W}_{3} \subset \cdots \subset \mathcal{W}_{g-1} \subset \mathcal{W}_{g}=\mathcal{M}_{g}
$$

where \mathcal{W}_{n} if the locus of curves having a Weierstrass point of order at most n, and then conjectured that $\mathcal{W}_{n} \backslash \mathcal{W}_{n-1}$ is affine.

Alternative geometric explanation

Recently, the author jointly with S. Grushevsky proposed an alternative approach for geometrical explanation of the vanishing properties of $\mathcal{M}_{g, k}$ motivated by certain constructions of the Whitham perturbation theory of integrable systems. The key elements of the alternative geometrical explanation are:

Alternative geometric explanation

Recently, the author jointly with S. Grushevsky proposed an alternative approach for geometrical explanation of the vanishing properties of $\mathcal{M}_{g, k}$ motivated by certain constructions of the Whitham perturbation theory of integrable systems. The key elements of the alternative geometrical explanation are:

- the moduli space $\mathcal{M}_{g, k}^{(n)}, n=\left(n_{1}, \ldots, n_{k}\right)$ of smooth genus g Riemann surfaces with the fixed n_{α}-jets of local coordinates in the neighborhoods of labeled points is the total space of a real-analytic foliation, whose leaves \mathcal{L} are locally smooth complex subvarieties of real codimension $2 g ;$
on $\mathcal{M}_{G, k}^{(n)}$ there is an ordered set of $\left(\operatorname{dim}_{\mathbb{R}} \mathcal{L}\right)$ continuous
functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these

Alternative geometric explanation

Recently, the author jointly with S. Grushevsky proposed an alternative approach for geometrical explanation of the vanishing properties of $\mathcal{M}_{g, k}$ motivated by certain constructions of the Whitham perturbation theory of integrable systems. The key elements of the alternative geometrical explanation are:

- the moduli space $\mathcal{M}_{g, k}^{(n)}, n=\left(n_{1}, \ldots, n_{k}\right)$ of smooth genus g Riemann surfaces with the fixed n_{α}-jets of local coordinates in the neighborhoods of labeled points is the total space of a real-analytic foliation, whose leaves \mathcal{L} are locally smooth complex subvarieties of real codimension 2g;
- on $\mathcal{M}_{g, k}^{(n)}$ there is an ordered set of $\left(\operatorname{dim}_{\mathbb{R}} \mathcal{L}\right)$ continuous functions, which restricted onto the leaves of the foliation are piecewise harmonic. Moreover, the first of these function restricted onto \mathcal{L} is a subharmonic function.

Results and conjectures

- Proof of Arbarello's conjecture

Theorem
 Any compact complex cycle in \mathcal{M}_{g} of dimension g - n must intersect \mathcal{W}_{n}.

- New upper bound for dimensions of complete (complex) cycles in the moduli space $\mathcal{M}_{g}^{c t}$ of stable curves of compact type.

Conjecture

There do not exist complete complex subvarieties of $\mathcal{M}_{g}^{c t}$ having non empty intersection with \mathcal{M}_{g} of dimension greater than $g-1$.
For $g \geq 2$ the maximum dimension of complete complex subvarieties in $\mathcal{M}_{g}^{c t}$ is $\frac{3}{2} g-2$.

Results and conjectures

- Proof of Arbarello's conjecture

Theorem

Any compact complex cycle in \mathcal{M}_{g} of dimension g - n must intersect \mathcal{W}_{n}.

- New upper bound for dimensions of complete (complex) cycles in the moduli space $\mathcal{M}_{g}^{c t}$ of stable curves of compact type.

Results and conjectures

- Proof of Arbarello's conjecture

Theorem

Any compact complex cycle in \mathcal{M}_{g} of dimension g - n must intersect \mathcal{W}_{n}.

- New upper bound for dimensions of complete (complex) cycles in the moduli space $\mathcal{M}_{g}^{\text {ct }}$ of stable curves of compact type.

Conjecture

There do not exist complete complex subvarieties of $\mathcal{M}_{g}^{c t}$ having non empty intersection with \mathcal{M}_{g} of dimension greater than $g-1$.
For $g \geq 2$ the maximum dimension of complete complex subvarieties in $\mathcal{M}_{q}^{c t}$ is $\frac{3}{2} g-2$.

Results and conjectures

- Proof of Arbarello's conjecture

Theorem

Any compact complex cycle in \mathcal{M}_{g} of dimension g - n must intersect \mathcal{W}_{n}.

- New upper bound for dimensions of complete (complex) cycles in the moduli space $\mathcal{M}_{g}^{c t}$ of stable curves of compact type.

Conjecture

There do not exist complete complex subvarieties of $\mathcal{M}_{g}^{c t}$ having non empty intersection with \mathcal{M}_{g} of dimension greater than $g-1$.
For $g \geq 2$ the maximum dimension of complete complex subvarieties in $\mathcal{M}_{g}^{c t}$ is $\frac{3}{2} g-2$.

Previously known bounds

- Diaz:
there is no compact cycle in $\mathcal{M}_{g}^{c t}$ of dimension greater that $2 g-3$.
- Keel and Sadun:
for $g \geq 3$ there do not exist complete complex subvarieties of $\mathcal{M}_{g}^{c t}$ of dimension greater than $2 g-4$.
The proof is by easy induction arguments starting from the base $g=3$. The proof of the base statement is a corollary of remarkable vanishing result:
- there do not exist a complete complex subvarieties of the moduli space \mathcal{A}_{g} of principally polarized abelian varieties of codimension g.

Previously known bounds

- Diaz:
there is no compact cycle in $\mathcal{M}_{g}^{c t}$ of dimension greater that $2 g-3$.
- Keel and Sadun: for $g \geq 3$ there do not exist complete complex subvarieties of $\mathcal{M}_{g}^{c t}$ of dimension greater than $2 g-4$.

The proof is by easy induction arguments starting from the
base $g=3$. The proof of the base statement is a corollary of
remarkable vanishing result:

- there do not exist a complete complex subvarieties of the moduli space \mathcal{A}_{g} of principally polarized abelian varieties of codimension g.

Previously known bounds

- Diaz:
there is no compact cycle in $\mathcal{M}_{g}^{c t}$ of dimension greater that $2 g-3$.
- Keel and Sadun:
for $g \geq 3$ there do not exist complete complex subvarieties
of $\mathcal{M}_{g}^{c t}$ of dimension greater than $2 g-4$.
The proof is by easy induction arguments starting from the base $g=3$. The proof of the base statement is a corollary of remarkable vanishing result:
- there do not exist a complete complex subvarieties of the moduli space \mathcal{A}_{g} of principally polarized abelian varieties of codimension g.

Previously known bounds

- Diaz:
there is no compact cycle in $\mathcal{M}_{g}^{c t}$ of dimension greater that $2 g-3$.
- Keel and Sadun: for $g \geq 3$ there do not exist complete complex subvarieties of $\mathcal{M}_{g}^{c t}$ of dimension greater than $2 g-4$.
The proof is by easy induction arguments starting from the base $g=3$. The proof of the base statement is a corollary of remarkable vanishing result:
- there do not exist a complete complex subvarieties of the moduli space \mathcal{A}_{g} of principally polarized abelian varieties of codimension g.

Real normalized differentials

The foliation structure arises through identification of $\mathcal{M}_{g, k}^{(n)}$ with the moduli space of curves with fixed real-normalized meromorphic differential. By definition a real normalized meromorphic differential is a differential whose periods over any cycle on the curve are real. The power of this notion is that:

Lemma

For any fixed singular parts of poles with pure imaginary residues, there exists a unique meromorphic differential Ψ, having prescribed singular part at p_{α} and such that all its periods on 「 are real, i.e.

$$
\Im\left(\oint_{c} \psi\right)=0, \quad \forall c \in H^{1}(\Gamma, \mathbb{Z}) .
$$

Foliation

Definition

> A leaf \mathcal{L} of the foliation on $\mathcal{M}_{g, k}^{(n)}$ defined to be the locus along which the periods of the corresponding differentials remain (covariantly) constant.

> The leaves \mathcal{L} of the foliation can be regarded as a generalization of the Hurwitz spaces of \mathbb{P}^{1} covers.

> It is basic fact of the Whitham theory:

Theorem (Kr-Phong 1995)
A leaf \mathcal{L} is a smooth complex subvariety of real codimension $2 g$.

Foliation

Definition

> A leaf \mathcal{L} of the foliation on $\mathcal{M}_{g, k}^{(n)}$ defined to be the locus along which the periods of the corresponding differentials remain (covariantly) constant.

The leaves \mathcal{L} of the foliation can be regarded as a generalization of the Hurwitz spaces of \mathbb{P}^{1} covers.

It is basic fact of the Whitham theory:
Theorem (Kr-Phong 1995)
A leaf \mathcal{L} is a smooth complex subvariety of real codimension
$2 g$.

Foliation

Definition

A leaf \mathcal{L} of the foliation on $\mathcal{M}_{g, k}^{(n)}$ defined to be the locus along which the periods of the corresponding differentials remain (covariantly) constant.

The leaves \mathcal{L} of the foliation can be regarded as a generalization of the Hurwitz spaces of \mathbb{P}^{1} covers.

It is basic fact of the Whitham theory:

Theorem (Kr-Phong 1995)

A leaf \mathcal{L} is a smooth complex subvariety of real codimension $2 g$.

Coordinates along a leaf

A set of holomorphic coordinates on $\mathcal{M}_{g, k}^{(n)}$ are "critical" values of the corresponding abelian integral $F(p)=c+\int^{p} \Psi, p \in \Gamma$:

At the generic point, where zeros q_{s} of ψ are distinct, the coordinates on \mathcal{L} are the evaluation of F at these critical points:

$$
\begin{equation*}
\varphi_{s}=F\left(q_{s}\right), \quad \Psi\left(q_{s}\right)=0, \quad s=0, \ldots, d=\operatorname{dim} \mathcal{L} \tag{1}
\end{equation*}
$$

normalized by the condition $\sum_{s} \varphi_{s}=0$.

A direct corollary of the real normalization is the statement that:

- imaginary parts $f_{s}=\Im \varphi_{s}$ of the critical values depend only on labeling of the critical points
They can be arranged into decreasing order

$$
f_{0} \geq f_{1} \geq \cdots \geq f_{d-1} \geq f_{d} .
$$

After that f_{j} can be seen as a well-defined continuous function on $\mathcal{M}_{g, k}^{(n)}$, which restricted onto \mathcal{L} is a piecewise harmonic function. Moreover, f_{0} restricted onto \mathcal{L} is a subharmonic function, i.e, f_{0} has no local maximum on unless it is constant.

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.

On Z the function f_{0} (defined by critical values of real-normalized differential with two simple poles) must achieve its maximum at some point.
\rightarrow At this point the function f_{0} achieves its maximum on $Z \cap \mathcal{L}$. \rightarrow Hence, it is a constant on $Z \cap \mathcal{L}$.
\rightarrow If f_{0} is a constant then (inductively) all the other functions f_{j} are constants.
\rightarrow Then, $Z \cap \mathcal{L}$ is at most zero-dimensional, i.e. Z intersects \mathcal{L}
transversally.

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.
\rightarrow On Z the function f_{0} (defined by critical values of real-normalized differential with two simple poles) must achieve its maximum at some point.

transversally.

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.
\rightarrow On Z the function f_{0} (defined by critical values of real-normalized differential with two simple poles) must achieve its maximum at some point.
\rightarrow At this point the function f_{0} achieves its maximum on $Z \cap \mathcal{L}$.
\rightarrow If f_{0} is a constant then (inductively) all the other functions f_{j} are constants.
\rightarrow Then, $Z \cap \mathcal{L}$ is at most zero-dimensional, i.e. Z intersects \mathcal{L}
transversally.
$\rightarrow \operatorname{dim} X \leq g-2$

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.
\rightarrow On Z the function f_{0} (defined by critical values of real-normalized differential with two simple poles) must achieve its maximum at some point.
\rightarrow At this point the function f_{0} achieves its maximum on $Z \cap \mathcal{L}$.
\rightarrow Hence, it is a constant on $Z \cap \mathcal{L}$.
\rightarrow If f_{0} is a constant then (inductively) all the other functions f_{j} are constants.
\rightarrow Then, $Z \cap \mathcal{L}$ is at most zero-dimensional, i.e. Z intersects \mathcal{L}
transversally.
$\rightarrow \operatorname{dim} X \leq g-2$

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.
$\rightarrow O n Z$ the function f_{0} (defined by critical values of real-normalized differential with two simple poles) must achieve its maximum at some point.
\rightarrow At this point the function f_{0} achieves its maximum on $Z \cap \mathcal{L}$.
\rightarrow Hence, it is a constant on $Z \cap \mathcal{L}$.
\rightarrow If f_{0} is a constant then (inductively) all the other functions f_{j} are constants.
\rightarrow Then, $Z \cap \mathcal{L}$ is at most zero-dimensional, i.e. Z intersects \mathcal{L}
transversally.
$\rightarrow \operatorname{dim} X \leq a-2$

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.
$\rightarrow O n Z$ the function f_{0} (defined by critical values of real-normalized differential with two simple poles) must achieve its maximum at some point.
\rightarrow At this point the function f_{0} achieves its maximum on $Z \cap \mathcal{L}$.
\rightarrow Hence, it is a constant on $Z \cap \mathcal{L}$.
\rightarrow If f_{0} is a constant then (inductively) all the other functions f_{j} are constants.
\rightarrow Then, $Z \cap \mathcal{L}$ is at most zero-dimensional, i.e. Z intersects \mathcal{L} transversally.

Diaz' theorem revisited

Let X be a complete cycle in \mathcal{M}_{g} and Z be its preimage under the forgetfull map: $\mathcal{M}_{g, 2} \subset \mathcal{C}_{g}^{2} \longmapsto \mathcal{M}_{g}$.
\rightarrow On Z the function f_{0} (defined by critical values of
real-normalized differential with two simple poles) must achieve its maximum at some point.
\rightarrow At this point the function f_{0} achieves its maximum on $Z \cap \mathcal{L}$.
\rightarrow Hence, it is a constant on $Z \cap \mathcal{L}$.
\rightarrow If f_{0} is a constant then (inductively) all the other functions f_{j} are constants.
\rightarrow Then, $Z \cap \mathcal{L}$ is at most zero-dimensional, i.e. Z intersects \mathcal{L} transversally.
$\rightarrow \operatorname{dim} X \leq g-2$

It was tempting to use differentials with one pole (second kind) for the proof of Arbarello's conjecture.

- Additional difficulty: the space of singular parts of real-normalized differentials is non-compact.
- Tool, which allows to overcome the difficulty: cycles dual to critical points

It was tempting to use differentials with one pole (second kind) for the proof of Arbarello's conjecture.

- Additional difficulty: the space of singular parts of real-normalized differentials is non-compact.
- Tool, which allows to overcome the difficulty: cycles dual to

It was tempting to use differentials with one pole (second kind) for the proof of Arbarello's conjecture.

- Additional difficulty: the space of singular parts of real-normalized differentials is non-compact.
- Tool, which allows to overcome the difficulty: cycles dual to critical points

Cusps of plane curves.

- Classical problem: What is the maximum number $s(d)$ of cusps on degree d plane curve ?

Plane curves of degree d are defined by the equation

- Expected answer: $s(d)_{\text {exp }}=d(d+1) / 4$

Hirano and Kulikov constructed a families of curves with large number of cusps that give

Cusps of plane curves.

- Classical problem: What is the maximum number $s(d)$ of cusps on degree d plane curve ?

Plane curves of degree d are defined by the equation

$$
\sum_{i+j \leq d} \alpha_{i j} w^{i} z^{j}=0
$$

- Expected answer: $s(d)_{\exp }=d(d+1) / 4$

Hirano and Kulikov constructed a families of curves with large number of cusps that give

Cusps of plane curves.

- Classical problem: What is the maximum number $s(d)$ of cusps on degree d plane curve ?

Plane curves of degree d are defined by the equation

$$
\sum_{i+j \leq d} \alpha_{i j} w^{i} z^{j}=0
$$

- Expected answer: $s(d)_{\text {exp }}=d(d+1) / 4$

Hirano and Kulikov constructed a families of curves with large number of cusps that give

$$
\begin{gathered}
\sup \lim _{d \rightarrow \infty} \frac{s(d)}{d^{2}} \geq \frac{9}{32} \\
\sup \lim _{d \rightarrow \infty} \frac{s(d)}{d^{2}} \geq \frac{283}{960} \simeq 0.2948
\end{gathered}
$$

respectively.

Upper bound

Until recently the best upper bound was obtained by Hirzebruch

$$
s(d) \leq \frac{5}{16} d^{2}-\frac{3}{8} d \simeq 0.3125 d^{2}+O(d)
$$

In 2004 Lander using generalization of
Bogomolov-Miyaoka-Yau inequality proved

Upper bound

Until recently the best upper bound was obtained by Hirzebruch

$$
s(d) \leq \frac{5}{16} d^{2}-\frac{3}{8} d \simeq 0.3125 d^{2}+O(d)
$$

In 2004 Lander using generalization of
Bogomolov-Miyaoka-Yau inequality proved

$$
\begin{aligned}
& s(d) \leq \frac{125+\sqrt{73}}{432} d^{2} \simeq 0.309 d^{2} \\
& 0.2948 \leq \sup \lim _{d \rightarrow \infty} \frac{s(d)}{d^{2}} \leq 0.3091
\end{aligned}
$$

Upper bound

Until recently the best upper bound was obtained by Hirzebruch

$$
s(d) \leq \frac{5}{16} d^{2}-\frac{3}{8} d \simeq 0.3125 d^{2}+O(d)
$$

In 2004 Lander using generalization of
Bogomolov-Miyaoka-Yau inequality proved

$$
\begin{aligned}
& s(d) \leq \frac{125+\sqrt{73}}{432} d^{2} \simeq 0.309 d^{2} \\
& 0.2948 \leq \sup \lim _{d \rightarrow \infty} \frac{s(d)}{d^{2}} \leq 0.3091
\end{aligned}
$$

Ongoing project with Grushevsky

Problem arizen in a study of singularities of solution of the Whitham equations:

- What is the maximal number of common zeros of two real normalized differentials having fixed orders of poles?
\square
- Corollary

Ongoing project with Grushevsky

Problem arizen in a study of singularities of solution of the Whitham equations:

- What is the maximal number of common zeros of two real normalized differentials having fixed orders of poles?

Conjecture (Theorem ? (Grushevsky-Kr))

Two real normalized meromorphic differentials with $d>1$ poles of order 2 on a smooth genus g algebraic curve can not have more that $\frac{3}{2}(g+d-1)$ common zeros.

- Corollary

Ongoing project with Grushevsky

Problem arizen in a study of singularities of solution of the Whitham equations:

- What is the maximal number of common zeros of two real normalized differentials having fixed orders of poles?

Conjecture (Theorem ? (Grushevsky-Kr))

Two real normalized meromorphic differentials with $d>1$ poles of order 2 on a smooth genus g algebraic curve can not have more that $\frac{3}{2}(g+d-1)$ common zeros.

- Corollary

$$
s(d) \leq \frac{3}{10} d(d-1)
$$

