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My Ricci Flow History

My First Encounter with Ricci Flow:

Richard Hamilton's 1982 PNGS Talk in Vancouver

Theorem

If (𝑀3, 𝑔0) has 𝑅𝑐(𝑔0) ≥ 0, then 𝑀3 = S3

Proof via Ricci Flow Convergence

My Second Encounter with Ricci Flow:

Mauro Carfora's 1985 GRG Society Talk in Florence

Conjecture

The Einstein Evolution of "Smoothed" initial data accurately models general

cosmological solutions of Einstein's equations

Never proven



My Third Encounter with Ricci Flow: 

Collaboration with Mauro Carfora and Martin Jackson on JDG Paper

Theorem:

The Ricci flow of "Gowdy-type metrics" on 𝑇3 always converges to a

flat metric.

Significance:

The first Ricci flow convergence result for metrics of positive and

negative Ricci curvature.



Ricci flow

Two ways to think about Ricci flow:

–Initial value problem for a (weakly) parabolic PDE system

– Dynamical System



We know a lot about Ricci flow for:

– 2 and 3 Dimensional Riemannian Manifolds

– Riemannian Metrics on Compact Manifolds with Large Isometry 
Groups



Outline of the Talk

Part A of the talk: Convergence Stability of Ricci flow for Flat 
Geometries on the Torus and for the Hyperbolic Geometry in 
Asymptotically Hyperbolic Metrics 

(with Chris Guenther and Eric Bahuaud)

Application A 1: Convergence of Ricci flow for initial metrics near 
warped product geometries (with no isometry) to a flat metric

Application A 2: Convergence of Ricci flow for initial metrics near 
rotationally symmetric asymptotically hyperbolic geometries (with no 
symmetry) to the hyperbolic metric



Part B of the talk: Singularity Formation for Ricci flow for Multi-Warped 
Complete Geometries on Non-Compact manifolds 

(with Tim Carson, Dan Knopf, and Natasa Sesum)

Application B 1: Unexpected behavior of blowup sequences in Ricci flow 
solutions with Type I singularities at spatial infinity

– some blowup subsequences form gradient shrinking Ricci solitons

– other blowup subsequences form ancient solutions which are not solitons

Application B 2: Weak stability of generalized cylinders under Ricci flow.

G



Convergence Stability for Ricci Flow

The Idea:
–Let 𝑔∞ be a stable point for Ricci flow: either asymptotic stable fixed point 
or stable fixed point.

–Let 𝑔0 be a metric such that the Ricci flow 𝑔0(𝑡) with initial metric 𝑔0
converges to 𝑔∞. 



–Ricci flow is convergent stable at 𝑔0 if there exists a neighborhood N 
of 𝑔0 such that for every metric 𝑔1 in N, the Ricci flow starting at 𝑔1
converges to 𝑔∞, or to a metric in the corresponding center manifold. 

Example Application:
Since Lott and Sesum show that the Ricci flow of warped product 
geometries of the circle over the torus always converge to flat 
geometries, and since one can prove convergence stability for Ricci 
flow on 𝑇3, it follows that the Ricci flow for metrics near warped 
product geometries must also converge to flat geometries.



Example Application:

Since Bahuaud and Woolgar show that the Ricci flow for rotationally 
symmetric asymptotically hyperbolic geometries always converges to 
the hyperbolic geometry, and since one can prove convergence stability 
for Ricci flow for asymptotically hyperbolic geometries, it follows that 
the Ricci flow for asymptotically hyperbolic metrics which are nearly 
rotationally symmetric must converge to the hyperbolic geometry.



Ingredients for Proving Convergence Stability 
for Ricci flow
– Prove that Ricci flow for a certain class of metrics is stable or 
asymptotically stable at 𝑔∞ with respect to some chosen topology (in 
terms of some function space)

– Prove that Ricci flow for that same class of metrics is well-posed in 
the sense of continuous dependence on initial data.



Proof of Convergence Stability for Ricci Flow 
on 𝑇𝑛 at Flat Metrics
We need:

– Stability Theorem at the Flat Metric

– Continuous Dependence of Ricci Flow on Compact Manifolds



Stability Theorem for flat metrics on  𝑇𝑛

Theorem (Guenther-I-Knopf)      

Let  h k,𝛼 denote the little Holder space of symmetric 2-tensor fields 
whose k derivatives are 𝛼 − Holder smooth.

Let 𝑔∞ be a flat Riemannian metric on 𝑇𝑛.

There exists a neighborhood 𝑁 of 𝑔∞ (defined via the norm of ℎ 2,𝛼 ) 
such that the Ricci flow 𝑔1(𝑡) for any initial metric 𝑔1 in 𝑁 must 
converge exponentially to a flat metric (generally not 𝑔∞). 



Key ideas for proving the Stability Theorem:

1) Semi-Group Approach (DaPrato, Lunardi)

2) Use of DeTurck Flow (as "shadow" to Ricci flow)

3) Linearization of the DeTurck Flow



4) Verify "sectoriality" of the Lichnerowicz Laplacian

(i.e., the spectrum forms a wedge in a left complex 1/2-plane)

5) Verify boundedness of the "resolvent" of the Lichnerowicz Laplacian

6) Verify that the RHS of the DeTurck flow is continuous, and has a 

Frechet derivative which is Lipschitz. 

7) Verify that the diffeomorphism relating Ricci flow and DeTurck flow      

is bounded. (Involves analysis of a harmonic map flow generating       
this  diffeomorphism.)



Continuous Dependence Theorem for Ricci Flow 
on Compact Manifolds



Tools Needed to Prove Continuous 
Dependence:
– Short Time Uniqueness and Continuous Dependence (Bamler-
Brendle) 

[Proven  using similar tools as for Stability Theorem]

– Long Time Continuous Dependence (Bahuaud-Guenther-I ‘19)

[Proven using Iteration of Uniform short time continuous        
dependence]



–The Convergence Stability Theorem on Closed Manifolds

Theorem (Bahuaud, Guenther, I; '19)

Note: This last result is a bonus.



Proof of Convergence Stability

– Let 𝑔0(t) be the normalized Ricci flow of a metric g0 which converges 
exponentially to a stable fixed point flat metric 𝑔∞
– It follows from the definition of convergence that within a finite time, 
the flow 𝑔0(t) enters any specified neighborhood of 𝑔∞ , including the 
neighborhood N in which all normalized Ricci flows must converge 
exponentially to 𝑔∞ or a nearby flat metric.

– If  𝑔1 is a metric sufficiently close to  𝑔0 , then it follows from 
continuous dependence that for any specified finite time, the flow 𝑔1(t) 
remains close to the flow  𝑔0(t) and therefore enters N.

– It follows that  𝑔1(t) converges exponentially to a flat metric in the 
center manifold containing 𝑔∞.



Convergence Stability of Ricci Flow for 
Asymptotically Hyperbolic Geometries
Theorem (Bahuaud-Guenther-I ‘21)

Let (M, 𝑔0 ) be a rotationally symmetric asymptotically hyperbolic 
metric with the same conformal infinity as the hyperbolic metric. 
There exists an open neighborhood N of 𝑔0 (with respect to a 
specified little Holder space) for asymptotically hyperbolic metrics 
such that the normalized Ricci flow with initial metric 𝑔1 ∈ N 
converges exponentially to the hyperbolic metric.



Sketch of the Proof of Convergence Stability 
of Ricci Flow for AH Geometries
[Same idea as for Proof of Convergence Stability on Compact Manifolds;

But using Weighted Holder Spaces adapted to the AH geometries]

– Stability Theorem for the Hyperbolic Metric

(Bamler-Brendle)

– Long Time Continuous Dependence Theorem of Ricci Flow for AH 
Geometries

(Bahuaud-Guenther-I ‘21)

– Convergence of Rotationally Symmetric AH Geometries to the Hyperbolic 
Geometry

(Bahuaud-Woolgar)



Singularity Formation for Ricci flow for Multi-
Warped Complete Geometries on Non-Compact 
Manifolds

(Work with Carson, Knopf, and Sesum)

Motivation:

–Exploring Ricci flow Solutions with Singularities Forming at Spatial 
Infinity

– Obtaining a Weak Stability Result for Generalized Cylinders under 
Ricci flow



The Setup for Multi-Warped Products with 
Einstein Fibers



The Ricci Flow Equations for These Metrics

Derivation of These Equations:
Based on calculation of relation between curvature on 
the base, the fibers, and the full manifold
– Straightforward
– Tedious
– "Where the dead horses are buried" (Cliff Taubes)



A Model Direct Product Solution and a New 
Choice of Variables

The new form of the metric:



Controlling Functions for the Curvature

With the Estimate:



The Main Assumptions
Assumption Parameterization Functions:

–𝐺𝛼 contained in

This is a quasi-norm!



–𝐻𝛼 defined by



– We impose these conditions on the initial data:



Our Main Theorem
(Non-Technical Version)

:



Our Main Theorem
(Technical Version)

:





Corollary:
Equivalent Initial Data with The Singularity at 
Spatial Infinity

Here 𝑇𝑓𝑜𝑟𝑚 takes the form



Key Ideas Used To Prove Main Results

I] Evolution Estimates for the Curvature Controlling Quantities:

There exists a constant 𝐶𝑁 depending only on dimensions such that



II] Standard Short Time Existence Results for Ricci Flow:

Solutions exist for short time with curvature bounds

III] Lemma: Curvature Bound on Short Interval 

&

Evolution Estimates for Curvature Control Functions

Produces

Linear growth in time for the Curvature Control Functions

(on a possibly shorter time interval)

(with the estimate constants C depending on the curvature)



IV) Linear In Time Growth of Curvature Control Functions

Produces

Estimates on Curvature with Uniform Constants

(Possibly on Reduced Time Interval)

These improved estimates with uniform constants again bound the   

curvature linearly in time.

V) Use "Open-Closed Argument" to Extend the Time Interval of Curvature 
Estimates to the Time of the Singularity 𝑇𝑠𝑖𝑛𝑔



Proof of the Corollary
(Singularities are Type-I, and at Spatial Infinity)

VI) Bounds on the Curvature Control Functions on [0,𝑇𝑠𝑖𝑛𝑔) Implies that  
for t near 𝑇𝑠𝑖𝑛𝑔, there exist constants such that

Since on any compact set,



and since 𝑣𝑎(𝑥, 𝑡) Is positive everywhere on the manifold, but has 
infimum zero, It follows that

which tells us that the singularity is Type-I, and occurs at Spatial Infinity.



A Workhorse Lemma for Proving a Number of 
These Steps





This "Horse Cemetery" of a lemma allows us to estimate a function U

(say a geometric quantity on a short time interval)

in terms of a comparison function V

(say a geometric quantity at the initial time)

and a controlling function W

(say a large constant depending on curvatures).



Application B1: Unexpected Behavior of Blowup 
Sequences in Solutions of Ricci Flow with 
Singularities at Spatial Infinity

Some Useful Preliminary Definitions:



An Essential Blowup Sequence in a singular Ricci flow solution

is a sequence (𝑝𝑖 , 𝑡𝑖)  ∈ 𝑀 𝑥 [0, 𝑇) such that for some constant c

If a Ricci flow solution is Type-I and if a point p contained in 𝑀 is the 
limit point of an essential blowup sequence, then p is a Type-I singular 
point for that flow.



Enders, Moeller and Topping show that if a Type-I Ricci flow solution 
(M, g(t)) contains a Type-I singular point p∈ 𝑀, then for every infinite 
sequence 𝜆𝑗 , the corresponding rescaled Ricci flows 

on the time interval [-𝜆𝑗𝑇,0) subconverge to a normalized nontrivial 
gradient shrinking soliton; i.e., a solution (g,f) of



We show in this example that a Type-I singular Ricci flow solution with 
the singularity developing at spatial infinity– and nowhere on the Ricci 
flow solution manifold M –may have essential blowup sequences with 
some subsequences that have a gradient soliton limit and other 
subsequences that do not have a gradient soliton limit. 

This theorem and its corollary (work done with Carson, Knopf, and 
Sesum) illustrate this.





The examples that we consider in proving this theorem and corollary 
have metrics of the double warped product form

We choose initial conditions on the functions 𝑣1and 𝑣2 so that the 
metric satisfies the Main Assumptions, and so that the singularity 
occurs at time T= 𝑎∗ and at spatial infinity.



Results from Angenent and Knopf show that for metrics of this form, 
we obtain a gradient shrinking soliton if and only if the curvature of the 
Ricci flow solution satisfies the condition stated in the corollary.

By construction, we find that there are some subsequences of the 
essential blowup sequences of these Ricci flow solutions which satisfy 
the curvature condition in the corollary, and there are other 
subsequences which should not satisfy this curvature condition.



Application B2: Weak Stability of the 
Generalized Cylinder Under Ricci Flow
Colding and Minicozzi have proven a strong stability theorem for the mean 
curvature flow of embedded cylinders.

As a corollary of our main results, Carson, Knopf, Sessum and I can prove the 
following weak stability theorem for Ricci flow solutions near generalized 
cylindrical metrics.

Theorem:

Let M=𝑅𝑘𝑥 𝑆𝑝 for positive integers k and p≥2. The cylinder metric on M is

for some constant 𝑎∗.



The Ricci flow for this initial metric 𝑔𝑐𝑦𝑙(0) is

which becomes singular at time 𝑎∗.

If we choose a real-valued function 𝛿(x) such that the perturbed initial 
metric

with u(x,0)=𝑎∗+ 𝛿(x)

satisfies the Main assumptions and decays appropriately at spatial 
infinity,



Then the Ricci flow of this perturbed initial data g(x,0) develops a Type-
I singularity at spatial infinity at time 𝑎∗, and satisfies the stability 
condition



Addendum: Instability of Generalized 
Cylinders Under Rescaled Ricci Flow
For some studies of stability of Ricci flow, one focuses on rescaled 
solutions.

It is easy to see that the Ricci flow of generalized cylinders is not stable 
under small perturbations of the initial data:

Consider a generalized cylinder metric on 𝑅1𝑥 𝑆𝑝

and consider a small perturbation of such a metric



If we rescale the Ricci flow of the perturbed cylinder metric            by 
the factor 𝑇 − 𝑡 −1 where T is the collapse time for the            
spherical metrics, then for 𝜖 positive, the rescaled Ricci flow           
becomes infinitely large with no singularity, while for 𝜖 negative, the 
rescaled Ricci flow becomes singular before the time T.

It follows that in this sense, the rescaled Ricci flow for cylindrical 
metrics is unstable.


