
Deformation quantization, and obstructions to

the existence of closed star products

Akito Futaki
Tsinghua University, Yau Mathematical Sciences Center

Based on a joint work with Laurent La Fuente-Gravy

The 35th Annual Geometry Festival
April 23 to 25, 2021

Stony Brook University (online)

1



1. Star product

A star product on a Poisson manifold M of dimension n = 2m
is an associative product ∗ on the space C∞(M)[[ν]]
of formal power series in ν with coefficients in C∞(M)
(formal functions) such that if we write

f ∗ g :=
∞∑

r=0

νrCr(f, g) for f, g ∈ C∞(M)

then

1. the Cr’s are bidifferential ν-linear operators,

2. C0(f, g) = fg and C1(f, g)− C1(g, f) = {f, g},

3. the constant function 1 is a unit for ∗ (i.e. f ∗ 1 = f = 1 ∗ f).

Giving a star product is referred to as a deformation quantization.
(Bayen-Flato-Fronsdal-Lichnérowicz-Sternheimer, 1978)
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Recall that a symplectic form ω is a closed nondegenerate 2-form.

It induces the Poisson bracket

{f, g} := −ω(Xf , Xg)

for f, g ∈ C∞(M)

and vector field Xf uniquely determined by ı(Xf)ω = df .

There are known constructions of star products

for symplectic manifolds by

De Wilde-Lecompte (1983), Fedesov (1994),

Omori-Maeda-Yoshioka (1991),

and for general Poisson manifolds by Kontsevich (2003 (1997 peprint)).

This talk takes up Fedosov’s star product for compact symplectic

manifolds.
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Example : Moyal star product (local models on Darboux charts)

Consider the vector space R2n endowed with standard symplectic struc-

ture

ωstd :=
1

2
(ωstd)ijdx

i ∧ dxj.

The Moyal star product of f and g ∈ C∞(R2n) is defined by:

(f ∗Moyal g)(x) :=
(
exp

(
ν

2
Λij∂yi∂zj

)
f(y)g(z)

)∣∣∣∣
y=z=x

=
+∞∑
r=0

(
ν

2

)r 1

r!
Λi1j1 . . .Λirjr ∂rf

∂xi1 . . . ∂xir
(x)

∂rg

∂xj1 . . . ∂xjr
(x),

where Λij denotes the coefficients of the inverse matrix of (ωstd)ij.
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The trace of a star product is an algebra character

Tr : C∞(M)[[ν]] → R[ν−1, ν]]

satisfying

Tr([f, g]∗) = 0.

Fact [Fedosov, Nest–Tsygan, Gutt–Rawnsley]

Any star product ∗ on a symplectic manifold (M,ω) admits a trace.

Any trace is given by an L2-pairing with a formal function ρ ∈ C∞(M)[ν−1, ν]]:

Tr(F ) =
1

νm

∫
M

Fρ dv.

The formal function ρ is called the trace density. It is unique up to

multiplication by a formal constant, i.e. an element of R[ν−1, ν]].
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A star product is said to be (strongly) closed

if the integration functional is a trace,

equivalently, if the trace density is a formal constant,

i.e. ρ ∈ R[ν−1, ν]].

Closed star products were considered by Connes-Flato-Sternheimer to

study the relation between the cyclic cohomology and Hochschild coho-

mology (1992).

Omori-Maeda-Yoshioka proved the existence of a closed star product on

any symplectic manifold (1992) (based on their construction using the

notion of “Weyl manifold”).
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Example : Berezin-Toeplitz star product (related to Kähler geom)

For an ample line bundle L → M with a Kähler metric in c1(L), there is

a star product known as Berezin-Toeplitz star product.

To a function F ∈ C∞(M), one can associate a Toeplitz operator

T k
F ∈ End(H0(M,Lk)) defined by

T k
F : H0(M,Lk) → Γ(M,Lk) → H0(M,Lk) : s 7→ Fs 7→ Πk(Fs),

for Πk : Γ(M,Lk) → H0(M,Lk) being the L2-projection.

By Bordemann-Meinrenken-Schlichenmaier, there are bi-differential op-

erators Cj such that∥∥∥∥∥∥T k
F ◦ T k

G −
j=N−1∑
j=0

(
1

k

)j
T k
Cj(F,G)

∥∥∥∥∥∥
Op

≤ KN(F,G)
(
1

k

)N

for F,G ∈ C∞(M).

7



Definition The Berezin-Toeplitz (BT for short) star product ∗BT is

defined by

F ∗BT G :=
∞∑

j=0

νjCj(F,G) for F,G ∈ C∞(M).

By Bordemann-Meinrenken-Schlichenmaier, the trace of the BT star

product is given by

tr∗BT (F ) :=
∞∑

j=0

νj−m
∫
M

τj(F )
ωm

m!

where ∣∣∣∣∣∣Tr
(
T k
F

)
−

j=N−1∑
j=0

(
1

k

)j−m ∫
M

τj(F )
ωm

m!

∣∣∣∣∣∣ ≤ K̃N(F )
(
1

k

)N−m

for linear differential operators τj on C∞(M), with τ0 = Id.
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But for the Bergman kernel ρk

Trk
(
T k
F

)
=

∫
M

F (x)ρk(x)
ωm

m!
and ρk has the well-known asymptotic expansion∥∥∥∥∥∥ρk −

s∑
i=0

aik
m−i

∥∥∥∥∥∥
Cr

≤ Cs,rk
m−s−1,

with a1 the scalar curvature.

Thus

τj(F ) = ajF,

i.e. the trace density for ∗BT coincides with the asymptotic expan-

sion of the Bergman kernel as a formal function in ν = 1/k.
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In this talk, we consider Fedosov star product constructed on

symplectic manifolds.

The Fedosov star product is defined

given a symplectic connection ∇ and

a closed formal 2-form Ω ∈ νΩ2(M)[[ν]],

and thus we denote it by ∗∇,Ω.

Here, a symplectic connection means

a torsion free connection making ω parallel.
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Fedosov’s construction roughly goes as follows:

Step 1 : Using the symplectic connection we can construct a flat con-

nection of the “Weyl algebra bundle” W . (The curvature lies in the

center of the Weyl algebra.)

Step 2 : Flat sections (parallel sections) in Γ(W ) form an algebra.

Step 3 : There is a one-to-one correspondence between the set of those

flat sections and C∞(M)[[ν]], which induces a star product.

It is known that any star product on a symplectic manifold

is equivalent to a Fedosov star product.

The equivalence is given by

1 +
∑
k≥1

νkTk

with Tk differential operators.
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In this talk, we study closedness of Fedosov star products naturally at-

tached to symplectic or Kähler manifolds.

On a compact symplectic manifold, we fix the de Rham class [ω0]

of the symplectic form and a formal second cohomology class [Ω0] ∈
νH2(M,R)[[ν]].

We study the following problem:

Problem : Can one find a triple (ω,∇,Ω) consisting of a symplectic

form ω ∈ [ω0], a symplectic connection ∇ with respect to ω and Ω ∈ [Ω0]

such that ∗∇,Ω is closed?
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Let G be a compact connected Lie group

acting effectively on a compact symplectic manifold M

preserving the symplectic form ω, a closed formal 2-form Ω ∈ νΩ2(M)[[ν]]

and a symplectic connection ∇ so that the Fedosov star product ∗∇,Ω is

G-invariant.

We identify a Lie algebra element X ∈ g with a vector field on M by the

action of G.

To define the quantum moment map, regard ω−Ω as the “quantum

symplectic form”.

If a vector field X satisfies

i(X)(ω −Ω) = dfX

for some formal function fX ∈ C∞(M)[[ν]], we call X a quantum Hamil-

tonian vector field,

and also call fX the quantum Hamiltonian function of X.
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Given a symplectic form ω and a closed formal 2-form Ω,

a G-equivariant map µ : M → g∗[[ν]] is a quantum moment map

if µX := ⟨µ,X⟩ ∈ C∞(M)[[ν]] is a quantum Hamiltonian function of X ∈ g,

i.e.

i(X)(ω −Ω) = dµX .

If there is a quantum moment map, we say that G-action on (M,ω,Ω)

is quantum-Hamiltonian.

Quantum moment maps are not unique, and any two of them differ by

a formal constant.

Thus, we can assume the quantum moment map is normalized so that∫
M

µX(ω −Ω)m = 0.
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Given a quantum-Hamiltonian G-space (M,ω0,Ω0), we denote by

CG([ω0], [Ω0]) the space consisting of all triples (ω,Ω,∇) such that

(a) (M,ω,Ω) is a quantum-Hamiltonian G-space,

(b) ω is cohomologous to ω0 and there is a smooth path {ωs}0≤s≤1

consisting of G-invariant symplectic forms joining ω0 and ω in the

cohomology class [ω0] (so that Moser’s theorem can be applied),

(c) Ω is cohomologous to Ω0, and

(d) ∇ is a G-invariant symplectic connection with respect to ω.
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The trace of a star product ∗ on a symplectic manifold (M,ω) can be

normalized as follows.

On a contractible Darboux chart U we have an equivalence

B : (C∞(U)[[ν]], ∗) → (C∞(U)[[ν]], ∗Moyal)

of ∗|C∞(U)[[ν]] with the Moyal star product ∗Moyal satisfying

Bf ∗Moyal Bg = B(f ∗ g).

The normalization condition is

Tr(f) =
1

(2πν)m

∫
M

Bf
ωm

m!
.

B has been expressed explicitly and studied by Fedosov and Gutt-Rawnsley.
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Theorem : Let (M,ω0,Ω0) be a quantum-Hamiltonian G-space and

consider a triple (ω,Ω,∇) in CG([ω0], [Ω0]). For X ∈ g, let µX be the

quantum Hamiltonian function of X with respect to ω −Ω with normal-

ization ∫
M

µX(ω −Ω)m = 0.

Then the normalized trace Tr∗∇,Ω(µX) of the Fedosov star product

∗∇,Ω is independent of the choice of (ω,Ω,∇) in CG([ω0], [Ω0]).

The proof relies on the works on Fedosov and Gutt-Rawnsley on B.
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Hence, one can define a symplectic invariant :

Definition We define a character Tr[ω0],[Ω0] : g → R[ν−1, ν]] by

Tr[ω0],[Ω0](X) := Tr∗∇,Ω(µX)

where the right hand side is given by the above Theorem with normal-

ization ∫
M

µX(ω −Ω)m = 0.
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In the particular case Ω = 0, we obtain an

obstruction to ∃ of closed Fedosov star products :

Theorem Let (M,ω0) be a compact symplectic manifold.

If there exists a closed Fedosov star product ∗∇,0 for (ω,0,∇) in CG([ω0],0)

then Tr[ω0],0 vanishes.

Expanding Tr[ω0],0(X) in terms of power series in ν we obtain a

series of integral invariants obstructing the existence of

closed Fedosov star products

(i.e. L2-inner product of the Hamiltonian function and the trace density).
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Fact (La Fuente-Gravy): The trace density of ∗∇,0 is given by

ρ∇,0 := 1+
ν2

24
µ(∇) +O(ν3)

where µ(∇) is the Cahen-Gutt momentum (explained later) of the

symplectic connection ∇ given by

µ(∇) := (∇2
(p,q)Ric∇)pq −

1

2
Ric∇pq Ric∇ pq +

1

4
R∇
pqrsR

∇ pqrs,

where R∇ is the curvature of ∇ and Ric∇(·, ·) := tr[V 7→ R∇(V, ·)·] is the

Ricci tensor.

Thus, the closedness of ∗∇,0 implies the constancy of the Cahen-Gutt

momentum µ(∇).

This work was originally motivated by the study of Cahen-Gutt moment

map of the space of symplectic connections with the action Ham(ω).
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Comparing it with BT star product, we expect µ(∇) should play a similar
role as the scalar curvature in Kähler geometry.

List of similarities with cscK

The integral of µ(∇) is the Pontrjagin number p1 · [ω]m−2.
c.f.

∫
M Scal(ω)ωm = −c1(KM) · [ω]m−1.

In an earlier work, La Fuente-Gravy obtained a “Futaki invariant” ob-
structing ∃ of a Kähler metric with constant µ(∇).

Indeed, for the Kähler case, the ν2−m-term of Tr[ω0],0 is exactly La
Fuente-Gravy’s Futaki invariant.

Futaki-Ono obtained a different derivation of La Fuente-Gravy’s Futaki
invariant using Cahen-Gutt moment map similarly to the Donaldson-
Fujiki picture.

La Fuente-Gravy’s Futaki invariant in Kähler setting coincides with one
of the obstructions to asymptotic Chow semi-stability.

F-Ono obtained Lichnerowicz-Matsushima type result for constant µ(∇)
on compact Kähler manifolds.
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Application to another Kähler setting.

On a compact Kähler G-manifold (M,ω0, J) for a compact Lie group G

preserving ω0 and J, set MG
[ω0]

to be the space of G-invariant Kähler

forms in the cohomology class of ω0.

Consider the closed 2-form

Ω(ω) := νRic(ω),

with Ric(ω) := Ric∇(J ·, ·) being the Ricci form of the Kähler manifold

(M,ω, J).

Problem(Kähler version) Can one find ω ∈ MG
[ω0]

with Levi-Civita con-

nection ∇ and Ricci form Ric(ω) such that ∗∇,νRic(ω) is closed?
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A trace density for ∗∇,Ω(ω) has an expansion

ρ∇,Ω(ω) = 1−
ν

2
Scalω +O(ν2),

(La Fuente-Gravy).

So a necessary condition for ∗∇,Ω(ω) to be closed is

the existence of a constant scalar curvature Kähler metric.
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The triple (ω,Ω(ω),∇) is in CG([ω0], [Ω(ω0)]), and has the same quantum

moment map, which we denote by µ̃X, normalized by∫
M

µ̃Xωm = 0.

Theorem Let (M,ω0, J) be a compact Kähler manifold. Then

Tr
MG

[ω0](X) := Tr∗∇,Ω(ω)(µ̃X)

is independent of the choice of ω ∈ MG
[ω0]

. Moreover, if there exists

a closed Fedosov star product ∗∇,Ω(ω) for ω ∈ MG
[ω0]

, then Tr
MG

[ω0](X)

vanishes.
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Cahen-Gutt moment map:

On a symplectic manifold (M,ω), the space of symplectic connections

E(M,ω) is an affine space modeled on the set of all smooth sections

Γ(S3(T ∗M)) of symmetric covariant 3-tensors:

E(M,ω) ∼= ∇+Γ(S3(T ∗M)), ωiℓ(Γ̃
ℓ
jk − Γℓ

jk) symmetric.

We assume M is a closed manifold.

On E(M,ω) there is a natural symplectic structure ΩE defined at ∇ given

by

ΩE
∇(A,B) =

∫
M

ωi1j1ωi2j2ωi3j3Ai1i2i3 Bj1j2j3 ωm

for A, B ∈ T∇E(M,ω) ∼= Γ(S3(T ∗M)) where ωm := ωm

m! .
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Theorem(Cahen–Gutt) The function µ on E(M,ω) gives a moment

map for the action of Ham(M,ω).

This follows from the formula

d

dt

∣∣∣∣
t=0

∫
M

µ(∇+ tA) f ωm = ΩE(LXf
∇, A),

where

LX∇ = (XsR(∇, ω)squt +∇q∇uX
s ωst) dx

q ⊗ dxu ⊗ dxt.

(Kähler case given later.)
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Now we assume that M is a compact Kähler manifold and that ω is a

fixed symplectic form. We set as in Donaldson-Fujiki picture

N = {J integrable complex structure | (M,ω, J) is a Kähler manifold.}

La Fuente-Gravy considered the Levi-Civita map lv : N → E(M,ω) send-

ing J to the Levi-Civita connection ∇J of the Kähler manifold (M,ω, J).

Then lv∗ΩE gives a new symplectic structure on N if (ω, J) has

non-negative Ricci curvature (for nondegeneracy).
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Lemma : If we choose local holomorphic coordinates z1, · · · , zm then

for any real smooth function f we have

LXf
∇J = fijkdz

i ⊗ dzj ⊗ dzk + fijkdz
i ⊗ dzj ⊗ dzk

+fijkdz
i ⊗ dzj ⊗ dzk + fijkdz

i ⊗ dzj ⊗ dzk

+fikjdz
i ⊗ dzj ⊗ dzk + fikjdz

i ⊗ dzj ⊗ dzk

+fjkidz
i ⊗ dzj ⊗ dzk + fjkidz

i ⊗ dzj ⊗ dzk

where the lower indices of f stand for the covariant derivatives,

e.g. fijk = ∇k∇j∇if .

LXf
∇J = 0 =⇒ fijk = 0 ⇐⇒ fij = 0 = fij =⇒ LXf

∇J = 0
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Proposition 1. For a real smooth function f , LXf
∇J = 0 if and only if

Xf is a holomorphic Killing vector field.

Corollary 2 (La Fuente-Gravy 2016). Let (M,ω) be a compact Kähler

manifold, and gR be the real reduced Lie algebra of holomorphic vector

fields. We normalize the Hamiltonian functions f so that
∫
M f ωm = 0.

Then

Fut(grad′f) :=
∫
M

µ(∇J) f ωm

is independent of the choice of J ∈ J (M,ω).
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Theorem 3 (F-Ono 2018).

If there exists a Kähler metric of non-negative Ricci curvature such that

µ(∇) is constant for the Cahen–Gutt moment map µ and the Levi-Civita

connection ∇ then the reduced Lie algebra g of holomorphic vector

fields is reductive.

To show this we define Cahen–Gutt version of extremal Kähler metrics

and prove the same structure theorem as the Calabi extremal Kähler

metrics.

30


