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1. Schwarzschild,

Reissner–Nordström/Kerr and

the strong cosmic censorship conjecture
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Schwarzschild
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The Schwarzschild spacetime (M3+1, g) is geodesically incomplete:

There are observers–like poor γ–who live only for finite proper time.

It turns out that all such observers are torn apart by infinite tidal

forces. The spacetime is inextendible as a Lorentzian manifold with

C0 metric.

Is this latter prediction stable to arbitrary perturbation of

initial data?
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Reissner–Nordström 0 < Q <M
or Kerr 0 < ∣a∣ <M
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The part of spacetime determined by initial data is extendible C∞

into a larger spacetime into which observers γ enter in finite time.

These extensions are severly non-unique. What happens to the

observers?
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Strong cosmic censorship

Conjecture (Strong cosmic censorship, Penrose 1972). For

generic asymptotically flat initial data for the Einstein vacuum

equations Ric = 0, the maximal Cauchy development is future

inextendible as a suitably regular Lorentzian manifold.

One should think of this conjecture as a statement of global

uniqueness, or, in more colloquial language:

“The future is uniquely determined by the present”.
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The inextendibility requirement of the conjecture is true then in

Schwarzschild, but false in Reissner–Nordström and Kerr for Q ≠ 0,
a ≠ 0 respectively.

Thus, within the class of explicit stationary solutions, it is

extendibility that is generic, not inextendibility , which only holds

with a = Q = 0!
Why would one ever conjecture then that strong cosmic

censorship holds?
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Blue-shift instability (Penrose, 1968)

A possible mechanism for instability is the celebrated blue-shift

effect, first pointed out by Penrose:

H
+

C
H
+

I +

Σ

i+

i0

B

A

Penrose argued that this would cause linear perturbations to

blow-up in some way on a Reissner–Nordström background.

Subsequent numerical study by Simpson–Penrose on Maxwell

fields (1972).

This suggests Cauchy horizon formation is an unstable

phenomenon once a wave-like dynamic degree of freedom is allowed .
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While linear perturbations as a matter of principle can at worst

blow up at the Cauchy horizon CH+, in the full non-linear theory

governed by the Einstein vacuum equations, one might expect that

the non-linearities would kick in so as for blow-up to occur before

the Cauchy horizon has the chance to form.

The conclusion which was drawn from the Simpson–Penrose

analysis was that for generic dynamic solutions of the Einstein

equations, the picture would revert to Schwarzschild:
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The blue-shift effect in linear theory
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The simplest mathematical realisation of the Penrose heuristic

account of the blue shift instability can be given as a corollary of a

general recent result on the Gaussian beam approximation on

Lorentzian manifolds, due to Sbierski. This gives:

Theorem 1 (Sbierski, 2012). In subextremal Reissner–Nordström

or Kerr, let Σ be a two-ended asymptotically flat Cauchy surface

and choose a spacelike hypersurface Σ̃ transverse to CH+, let
EΣ[ψ], EΣ̃

[ψ] denote the energy measured with respect to the

normal of Σ, Σ̃, respectively.

Then

sup
ψ∈C∞ ∶EΣ[ψ]=1

E
Σ̃
[ψ] =∞.
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On the other hand, the radiation emitted to the black hole from

initially localised data should in fact decay and a priori this decay

could compete with the blue-shift effect. We have, however:

Theorem 2 (M.D. 2003). In subextremal Reissner–Nordström, for

sufficiently regular solutions of 2ψ = 0 of intially compact support,

then if the spherical mean ψ0 satisfies

∣∂vψ0∣ ≥ cv−4 (1)

along the event horizon H+, for some constant c > 0 and all

sufficiently large v, then E
Σ̃
[ψ] =∞.

The lower bound (1) is conjecturally true for generic initial data of

compact support, cf. Bicak, Gundlach–Price–Pullin, . . .

12



The blow-up given by the above theorem, if it indeed occurs is,

however, in a sense weak!

In particular, the L∞ norm of the solution remains bounded.

Theorem 3 (A. Franzen, 2013). In subextremal

Reissner–Nordström or Kerr with M > Q ≠ 0 or M > a ≠ 0,
respectively, let ψ be a sufficiently regular solution of the wave

equation. Then

∣ψ∣ ≤ C
globally in the black hole interior up to and including CH+.

The above result generalised a previous result (M.D. 2003)

concerning spherically symmetric solutions in the

Reissner–Nordström case.

See upcoming results of Gajic for the extremal case.

13



The first input into the proof is an upper bound for the decay rate

of a scalar field along the event horizon H+ of a general

subextremal Kerr metric (0 < ∣a∣ <M) which follows from work of

M.D.–Rodnianski–Shlapentokh- Rothman on the wave

equation on exterior Kerr:

∫
∞

v
∣∂vψ∣2 ≤ v−1−δ

(A similar estimate holds in the much easier Reissner–Nordström

case (cf. Blue.))
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Having decay on the event horizon for ∂vψ, one now needs to

propagate estimates in the black hole interior.

The interior can be partitioned into a red-shift region R, a no-shift

region N , and a blue-shift region B, separated by constant-r curves

where r = r+ − ǫ, r = r− + ǫ, respectively.
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In the blue-shift region B, one applies the energy identity

corresponding to a vector field

vp∂v + up∂u

in Eddington–Finkelstein coordinates, with p > 1. In a regular

coordinate V with V = 0 at the Cauchy horizon, this is

(logV )−pV ∂V + up∂u.
One can derive an energy estimate yielding the boundedness of the

flux

∫
S2
∫ vp(∂vφ)2 + (r2 − 2Mr +Q2)up∣∇/ψ∣2r2dvdσS2

The uniform boundedness of φ then follows from

φ ≤ ∫ ∂vφdv + data ≤ ∫ vp(∂vφ)2dv +∫ v−pdv + data,

commutation with angular momentum operators Ωi, and Sobolev.

2
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If one “naively” extrapolates the linear behaviour of 2ψ = 0 to the

non-linear Ric(g) = 0, where we think of ψ representing the metric

itself in perturbation theory, whereas derivatives of ψ representing

the Christoffel symbols, this suggests that the metric may extend

continuously to the Cauchy horizon whereas the Christoffel symbols

blow up, failing to be square integrable.

On the other hand, if one believes the original intuition, then the

non-linearities of the Einstein equations should induce blow-up

earlier.

Which of the two scenario holds?
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Fully non-linear toy-models under
spherical symmetry
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The programme of studying this problem with spherically

symmetric toy-models was initiated by Hiscock 1983,

Poisson–Israel 1989, and Ori 1990.
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The Einstein–Maxwell–(real) scalar field model
under spherical symmetry

The simplest toy model which allows for the study of this problem

in spherical symmetry with a true wave-like degree of freedom is

that of a self-gravitating real-valued scalar field in the presence of a

self-gravitating electromagnetic field.

Rµν −
1

2
gµνR = 8π(Tφµν + TFµν)

Tφµν = ∂µφ∂νφ − 1

2
gµν∂

αφ∂αφ

TFµν = 1

4π
(gαβFαµFβν −

1

4
gµνF

αβFαβ)

2gψ = 0, ∇µFµν = 0, dF = 0
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(M, g, φ), g = −2Ω2dudv + r2dσS2

∂u∂vr = −Ω
2

4r
− 1

r
∂vr∂ur +

1

4
Ω2r−3Q2,

∂u∂v logΩ
2 = −4π∂uφ∂vφ + Ω2

4r2
+ 1

r2
∂vr∂ur −

Ω2Q2

2r4
,

∂u(r∂vφ) = −∂uφ∂vr,
∂u(Ω−2∂ur) = −4πrΩ−2(∂uφ)2,
∂v(Ω−2∂vr) = −4πrΩ−2(∂vφ)2.
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The system was studied numerically, originally with conflicting

results

Gnedin–Gnedin 1993, Gundlach–Price–Pulin 1994,

Bonano–Droz–Israel–Morsink 1995, Brady–Smith 1995,

Burko 1997

It turns out, however, that one can in fact mathematically prove

that solutions indeed exhibit all the features first discussed by

Poisson–Israel and Ori.
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Theorem 4 (M.D. 2001, 2003). For arbitrary asymptotically flat

spherically symmetric data for the Einstein–Maxwell–real scalar

field system for which the scalar field decays suitably at spatial

infinity i0, then if the charge is non-vanishing and the event

horizon H+ is asymptotically subextremal, it follows that the

Penrose diagramme contains a subset which is as below

H
+ I +

C
H
+

Σ

i+

i0

where CH+ is a non-empty piece of null boundary. Moreover, the

spacetime can be continued beyond CH+ to a strictly larger manifold

with C0 Lorentzian metric, to which the scalar field also extends

continuously.
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Like for the recent result of Franzen about the linear problem

without symmetry, the proof of the above theorem requires in

particular as an input the fact that suitable decay bounds are

known for the scalar field along the horizon H+ under the

assumptions of the theorem, a statement which in turn was proven

in joint work with Rodnianski, 2003.

Assuming such a decay statement on H+ for the more complicated

Einstein–Maxwell–charged scalar field

system–this is yet to be proven!–a version of Theorem 4 has

recently been obtained by Kommemi.
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Theorem 5 (M.D. 2001, 2003). If a suitable lower bound on the

decay rate of the scalar field on the event horizon H+ is assumed

(c.f. the discussion of formula (1)), then the non-empty piece of

null boundary CH+ of Theorem 4 is in fact a weak null singularity

along which the Hawking mass blows up identically, in particular,

the metric cannot be continued beyond CH+ as a C2 metric, in fact,

as a continuous metric with square-integrable Christoffel symbols.

The scalar field cannot be extended beyond CH+ as a H1

loc function.
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The above results suggest that “inextendible as a Lorentzian

manifold with continuous metric and with Christoffel

symbols in L2

loc
” may be the correct formulation of “inextendible

as a suitably regular Lorentzian metric” in the statement of strong

cosmic censorship. This formulation is due to Christodoulou.

This notion of inextendibility, though not sufficient to show that

macroscopic observers are torn apart in the sense of a naive Jacobi

field calculation, ensures that the boundary of spacetime is singular

enough so that one cannot extend the spacetime as a weak solution

to a suitable Einstein–matter system. In this sense, it is sufficient to

ensure a version of the “determinism” which SCC tries to enforce.
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The Einstein–Maxwell–real scalar field system is such that for the

Maxwell tensor to be non-trivial, complete initial data necessarily

will have two asymptotically flat ends–just like Schwarzschild and

Reissner–Nordström.

The theorems of the previous section only probed the structure of

the boundary of spacetime in a neighbourhood of i+.

What about the remaining boundary?
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A preliminary result, using the fact that the matter model is, in

language due to kommemi, “strongly tame”, implies that, if the

initial data hypersurface Σ is moreover assumed to be “future

admissible”, this boundary in general is as below:
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where in addition to the null boundary components CH+ emanating

from i+, on which r is bounded below (at this level of generality,

these components are possibly empty , but are indeed non-empty if

Theorem 4 applies), there is an (again, possibly empty! ) achronal

boundary on which r extends continuously to 0, depicted above as

the thicker-shaded dotted line.
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Theorem 6 (M.D. 2011). Let (M, g, φ, F ) be the maximal Cauchy

development of sufficiently small spherically symmetric

perturbations of asymptotically flat two-ended data corresponding to

subextremal Reissner–Nordström with parameters 0 < QRN <MRN ,

under the evolution of the Einstein–Maxwell–real scalar field

system.

Then there exists a later Cauchy surface Σ+ which is

future-admissible and such that to the future of Σ+, the Penrose

diagramme of (M, g) is given by:
C
H
+ C
H
+

M

I
+

I +

H
+

H
+

Σ+
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The global bound

r ≥MRN −
√
M2

RN −Q2

RN − ǫ

holds for the area-radius r of the spherically symmetric spheres,

where ǫ → 0 as the ‘size’ of the perturbation tends to 0. Moreover,

the metric extends continuously beyond CH+ to a strictly larger

Lorentzian manifold (M̃, g̃), making CH+ a bifurcate null

hypersurface in M̃. The scalar field φ extends to a continuous

function on M̃. All future-incomplete causal geodesics inM extend

to enter M̃.

Finally, if φ satisfies the assumption of Theorem 5 on both

components of the horizon H+, then the Hawking mass extends

“continuously” to ∞ on all of CH+. In particular, (M, g) is future

inextendible as a spacetime with square integrable Christoffel

symbols.
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Beyond toys:

Null singularities for the vacuum Einstein
equations without symmetry

31



The first question one might ask is, can one construct weak null

singularities for the vacuum and are they “stable” to perturbation?

This has recently been resolved in a remarkable new result of Luk

Theorem 7 (Luk). Let us be given characteristic data for the

Einstein vacuum equations Ric(g) = 0 defined on a bifurcate null

hypersurface N out ∪N in, where N out is parameterised by affine

parameter u ∈ [0, u∗), and the data are regular on N in while

singular on N out, according to

∣χ̂∣ ∼ ∣ log(u∗ − u)∣−p∣u∗ − u∣−1, (2)

for appropriate p > 1. Then the solution exists in a region foliated

by a double null foliation with level sets u, ū covering the region

0 ≤ u < u∗, 0 ≤ u < u∗ for u∗ as above and sufficiently small u∗, and

the bound (2) propagates. The spacetime is continuously extendible

beyond u = u∗, but the Christoffel symbols fail to be square

integrable in this extension.
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The above theorem can be thought of as an extension of a recent

result of Luk–Rodnianski on the propagation of impulsive

gravitational waves, generalising explicit plane-wave solutions of

Penrose.

The setup was similar, but for impulsive gravitational waves, the

shear χ̂ was bounded (but discontinuous at u = u∗), enducing on the

curvature component α a delta function singularity at u = u∗.

In the new result of Luk, in contrast, χ̂ fails to be even in L2 (in

fact any Lp, p > 1), and thus the solutions cannot be extended

beyond the singular front at u = u∗ as weak solutions to the

vacuum Einstein equations.

Thus the situation for the new result is considerably more singular!
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In their theory of impulsive waves, Luk–Rodnianski also had a

result on the interaction of two impulsive wave fronts (generalising

the interacting impulsive plane waves of Khan–Penrose).

An analogue of this result for weak null singularities is:

Theorem 8 (Luk). Now suppose both N in ∪N out are

parameterised by u ∈ [0, u∗), u ∈ [0, u∗), with u∗, u∗ sufficiently

small, and suppose initially that both

∣χ̂∣ ∼ ∣ log(u∗ − u)∣−p∣u∗ − u∣−1, ∣χ̂∣ ∼ ∣ log(u∗ − u)∣−p∣u∗ − u∣−1, (3)
Then the solution exists in [0, u∗) × [0, u∗) and both bounds (3)
propagate.
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Theorem 9 (M.D.–Luk, to appear). Suppose we are given

characteristic initial data for the Einstein vacuum equations on two

intersecting null hypersurfaces H+A ∪H+B, such that, along each, the

data are near to and in fact asymptote to (at a sufficiently fast

rate) event-horizon data of a subextremal Kerr with a ≠ 0.
Then there exists a future extension (M̃, g̃) of the solution (M, g)
with C0 metric g̃ such that ∂M is a bifurcate null cone in M̃ and

all future incomplete geodesics in γ pass into M̃ ∖M.

Thus, the (conjectural) stability of the Kerr black hole exterior (up

to and including the event horizon) would imply by the above

theorem the global C0-stability of the Kerr Cauchy horizon!

More generally, the above theorem implies that any spacetime

settling down to Kerr in its exterior region will have a non-empty

Cauchy horizon in its interior across which the metric extends C0.
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What is left to be done?
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Conjecture 1. Small perturbations of Kerr initial data on a

Cauchy hypersurface indeed form an event horizon outside of which

the solution settles down to a nearby Kerr solution at a sufficiently

fast polynomial rate.

If the above conjecture is true, then the statement of our theorem

applies to arbitrary small perturbations of Kerr initial data on a

spacelike hypersurface. It would follow that for arbitrary small

perturbations on a spacelike Cauchy hypersurface, the metric can

be extended as a continuous Lorentzian metric across a bifurcate

Cauchy horizon. This would then disprove the strongest

formulations of strong cosmic censorship.
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Conjecture 2. For generic such initial data, the resulting Cauchy

horizon is indeed (globally) singular in the sense that any C0

extension M̃ as above will fail to have L2 Christoffel symbols in a

neighbourhood of any point of ∂M.

If the above conjecture is also true, then the statement of our

theorem proves Christodoulou’s formulation of strong cosmic

censorship in a neighbourhood of the Kerr family .
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In the case of small perturbations of two-ended Kerr, the above

would imply that there is no spacelike singularity period.

What happens more generally, in particular, in the one ended case?

Is there also a spacelike portion of the singularity?

Or does this null piece close up before such a singularity

can occur?
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