Critical metrics on connected sums of Einstein four-manifolds

M. Gursky (Notre Dame)

Joint with J. Viaclovsky (Wisconsin)

29th Annual Geometry Festival
Stony Brook University

April 18, 2014
X^4 smooth, closed, oriented 4-manifold.
X^4 smooth, closed, oriented 4-manifold.

- The **quadratic Riemannian functionals** are

$$g \mapsto \int |\text{Riem}(g)|^2 dv$$

Can replace the first by

$$g \mapsto \int |W|^2 dv$$

where W is the Weyl tensor.
\mathcal{X}^4 smooth, closed, oriented 4-manifold.

- The quadratic Riemannian functionals are

$$g \mapsto \int |\text{Riem}(g)|^2 dv$$

$$g \mapsto \int |\text{Ric}(g)|^2 dv$$

Can replace the first by

$$\int |W|^2 dv$$

where W is the Weyl tensor.
X^4 smooth, closed, oriented 4-manifold.

- The \textit{quadratic Riemannian functionals} are

 $$g \mapsto \int |Riem(g)|^2 dv$$

 $$g \mapsto \int |Ric(g)|^2 dv$$

 $$g \mapsto \int R^2 dv$$

 Can replace the first by $\int |W|^2 dv$, where W is the Weyl tensor.
\mathcal{X}^4 smooth, closed, oriented 4-manifold.

- The *quadratic Riemannian functionals* are
 \[g \mapsto \int |Riem(g)|^2 dv \]
 \[g \mapsto \int |Ric(g)|^2 dv \]
 \[g \mapsto \int R^2 dv \]

- Can replace the first by $\int |W|^2 dv$, where W is the Weyl tensor.
By the C-G-B formula,

\[32\pi^2 \chi(X^4) = \int |W|^2 dv - 2 \int |\text{Ric}|^2 dv + \frac{2}{3} \int R^2 dv. \]
By the C-G-B formula,

$$32\pi^2 \chi(X^4) = \int |W|^2 dv - 2 \int |\text{Ric}|^2 dv + \frac{2}{3} \int R^2 dv.$$

Therefore, suffices to consider

$$\mathcal{B}_t[g] = \int |W|^2 dv + t \int R^2 dv.$$
By the C-G-B formula,

\[32\pi^2 \chi(X^4) = \int |W|^2 dv - 2 \int |Ric|^2 dv + \frac{2}{3} \int R^2 dv. \]

Therefore, suffices to consider

\[\mathcal{B}_t[g] = \int |W|^2 dv + t \int R^2 dv. \]

\((t = \infty \text{ corresponds to } g \mapsto \int R^2 dv).\)
• When $t = 0$, this is the *Weyl functional*:

$$\mathcal{B}_0[g] = \int |W(g)|^2 dv.$$
• When \(t = 0 \), this is the \emph{Weyl functional}:

\[
\mathcal{B}_0[g] = \int |W(g)|^2 dv.
\]

• \(\mathcal{B}_0 \) is conformally invariant:

\[
\mathcal{B}_0[e^u g] = \mathcal{B}_0[g].
\]
The Weyl functional

- When $t = 0$, this is the Weyl functional:

$$B_0[g] = \int |W(g)|^2 dv.$$

- B_0 is conformally invariant:

$$B_0[e^u g] = B_0[g].$$

- Its gradient is the Bach tensor:

$$B_{ij} = -4(\nabla^k \nabla^\ell W_{ikj\ell} + \frac{1}{2} R^{k\ell} W_{ikj\ell}).$$

Critical metrics (i.e., metrics for which $B_{ij} = 0$) are called Bach-flat.
• In fact, B is conformally invariant:

$$B(e^u g) = e^{-u} B(g).$$
• In fact, B is conformally invariant:

$$B(e^u g) = e^{-u} B(g).$$

Example 1: Einstein metrics

The 2^{nd} Bianchi identity implies

$$\nabla^\ell W_{ikj\ell} = 0,$$

so the first term in B_{ij} vanishes. Second term vanishes since $R^{k\ell} = \lambda g^{k\ell}$.
• In fact, B is conformally invariant:

$$B(e^u g) = e^{-u} B(g).$$

Example 1: Einstein metrics

The 2nd Bianchi identity implies

$$\nabla^\ell W_{ikj\ell} = 0,$$

so the first term in B_{ij} vanishes. Second term vanishes since $R^{k\ell} = \Lambda g^{k\ell}$.

• It follows that any metric which is locally conformal to an Einstein metric is also Bach-flat.
X^4 oriented \Rightarrow the bundle of two-forms splits

$$\Lambda_2 = \Lambda_2^+ \oplus \Lambda_2^-$$

into sub-bundles of self-dual/anti-self-dual forms.
X^4 oriented \Rightarrow the bundle of two-forms splits

$$\Lambda_2 = \Lambda_2^+ \oplus \Lambda_2^-$$

into sub-bundles of self-dual/anti-self-dual forms. This induces a splitting of the Weyl tensor:

$$W = W^+ + W^-.$$
X^4 oriented \Rightarrow the bundle of two-forms splits

$$\Lambda_2 = \Lambda_2^+ \oplus \Lambda_2^-$$

into sub-bundles of self-dual/anti-self-dual forms. This induces a splitting of the Weyl tensor:

$$W = W^+ + W^-.$$

Definition.

(X^4, g) is called *self-dual* (resp., *anti-self-dual*) if $W^- \equiv 0$ (resp., $W^+ \equiv 0$.)
X^4 oriented \Rightarrow the bundle of two-forms splits

$$\Lambda_2 = \Lambda_2^+ \oplus \Lambda_2^-$$

into sub-bundles of self-dual/anti-self-dual forms. This induces a splitting of the Weyl tensor:

$$W = W^+ + W^-.$$

Definition.

(X^4, g) is called self-dual (resp., anti-self-dual) if $W^- \equiv 0$ (resp., $W^+ \equiv 0$).

Examples. Locally conformally flat manifolds, $(\mathbb{C}P^2, g_{FS})$.

M. Gursky (Notre Dame) Joint with J. Viaclovsky (Wisconsin) (29th Annual Geometry Festival Stony Brook University)
• By the Hirzebruch signature formula,

\[48\pi^2 \tau(M) = \int \left(|W^+|^2 - |W^-|^2 \right) dv. \]
By the Hirzebruch signature formula,

\[48\pi^2 \tau(M) = \int (|W^+|^2 - |W^-|^2) \, dv. \]

Example 2: SD/ASD metrics

Since SD/ASD metrics are global minima of \(B_0 \), they are Bach-flat.
Self-duality

- By the Hirzebruch signature formula,

\[48\pi^2 \tau(M) = \int (|W^+|^2 - |W^-|^2) \, dv. \]

Example 2: SD/ASD metrics

Since SD/ASD metrics are global minima of B_0, they are Bach-flat.

- There are a number of gluing constructions for SD/ASD metrics: Floer, Donaldson-Friedman, Kovalev-Singer, LeBrun, Poon, Taubes, etc.
• By the Hirzebruch signature formula,

\[48\pi^2 \tau(M) = \int (|W^+|^2 - |W^-|^2) \, dv. \]

Example 2: SD/ASD metrics

Since SD/ASD metrics are global minima of \(\mathcal{B}_0 \), they are Bach-flat.

• There are a number of gluing constructions for SD/ASD metrics: Floer, Donaldson-Friedman, Kovalev-Singer, LeBrun, Poon, Taubes, etc.

• All known examples of (compact) Bach-flat manifolds are either SD/ASD or Einstein.
\(B^t\)-flat metrics

- Recall

\[
B^t[g] = \int |W(g)|^2 dv + t \int R(g)^2 dv.
\]
Recall

\[\mathcal{B}^t[g] = \int |W(g)|^2 \, dv + t \int R(g)^2 \, dv. \]

The gradient of \(g \mapsto \int R^2 \, dv \) is

\[C_{ij} = 2 \left\{ \nabla_i \nabla_j R - (\Delta R)g_{ij} - R(R_{ij} - \frac{1}{4} Rg_{ij}) \right\}. \]
B^t-flat metrics

- Recall

$$B^t[g] = \int |W(g)|^2 dv + t \int R(g)^2 dv.$$

- The gradient of $g \mapsto \int R^2 dv$ is

$$C_{ij} = 2 \{ \nabla_i \nabla_j R - (\Delta R)g_{ij} - R(R_{ij} - \frac{1}{4} Rg_{ij}) \}. $$

Lemma

Critical points ($C_{ij} = 0$) are either scalar-flat or Einstein.
B^t-flat metrics

- Recall
 \[B^t[g] = \int |W(g)|^2 dv + t \int R(g)^2 dv. \]

- The gradient of $g \mapsto \int R^2 dv$ is
 \[C_{ij} = 2\{\nabla_i \nabla_j R - (\Delta R)g_{ij} - R(R_{ij} - \frac{1}{4} Rg_{ij})\}. \]

Lemma

Critical points ($C_{ij} = 0$) are either scalar-flat or Einstein.

Proof. Taking the trace gives $\Delta R = 0$, hence CSC (constant scalar curvature).
B^t-flat metrics

- Recall
 \[B^t[g] = \int |W(g)|^2 dv + t \int R(g)^2 dv. \]

- The gradient of $g \mapsto \int R^2 dv$ is
 \[C_{ij} = 2 \{ \nabla_i \nabla_j R - (\Delta R)g_{ij} - R(R_{ij} - \frac{1}{4} Rg_{ij}) \}. \]

Lemma
Critical points ($C_{ij} = 0$) are either scalar-flat or Einstein.

Proof. Taking the trace gives $\Delta R = 0$, hence CSC (constant scalar curvature). If $R \neq 0$, then $R_{ij} - \frac{1}{4} Rg_{ij} = 0$. QED.
B^t-flat metrics, cont.

Definition

(X^4, g) is B^t-flat if it is a critical point of B^t.

Lemma

(X^4, g) is B^t-flat \iff it has CSC and $B_{ij} = 2tR_{ij}$, where $E_{ij} = R_{ij} - \frac{1}{4}Rg_{ij}$ is the trace-free Ricci tensor.
Definition

\((X^4, g)\) is \(B^t\)-flat if it is a critical point of \(B^t\).

- \(B^t\)-flat metrics satisfy

\[
(B + tC)_{ij} = 0.
\]
Definition

$$(X^4, g)$$ is B^t-flat if it is a critical point of B^t.

• B^t-flat metrics satisfy

$$\left(B + tC\right)_{ij} = 0.$$

Lemma

$$(X^4, g)$$ is B^t-flat \Leftrightarrow it has CSC and

$$B_{ij} = 2tRE_{ij},$$

where $E_{ij} = R_{ij} - \frac{1}{4} R g_{ij}$ is the trace-free Ricci tensor.
Examples.
Examples.

- Einstein metrics.
Examples.

- Einstein metrics.
- Bach-flat, scalar-flat metrics.
Examples.

- Einstein metrics.
- Bach-flat, scalar-flat metrics.

The Goal:
Glue two Einstein 4-manifolds to produce new examples of B^t-flat metrics.
Examples.

- Einstein metrics.
- Bach-flat, scalar-flat metrics.

The Goal:
Glue two Einstein 4-manifolds to produce new examples of B^t-flat metrics.

The Catch: We cannot specify a priori the value of t.
An overview of the gluing procedure

- The parameter t is chosen to overcome a certain obstruction (more later).
An overview of the gluing procedure

• The parameter t is chosen to overcome a certain obstruction (more later).

• Before stating the main result, we want to give an overview of the gluing procedure.
• The parameter t is chosen to overcome a certain obstruction (more later).

• Before stating the main result, we want to give an overview of the gluing procedure.

The Set-up: Let (Y, g_Y) and (Z, g_Z) be Einstein (hence B^t-flat for all t), with positive scalar curvature.
• The parameter t is chosen to overcome a certain obstruction (more later).

• Before stating the main result, we want to give an overview of the gluing procedure.

The Set-up: Let (Y, g_Y) and (Z, g_Z) be Einstein (hence B^t-flat for all t), with positive scalar curvature. Fix points $y_0 \in Y$ and $z_0 \in Z$.
• The parameter t is chosen to overcome a certain obstruction (more later).

• Before stating the main result, we want to give an overview of the gluing procedure.

The Set-up: Let (Y, g_Y) and (Z, g_Z) be Einstein (hence B^t-flat for all t), with positive scalar curvature. Fix points $y_0 \in Y$ and $z_0 \in Z$.

We want to prove the existence of a B^t-flat metric on $X = Y \# Z$.
Step 1: Blowing up

- Since $R_Y = R(g_Y) > 0$, the conformal laplacian $L = -\frac{1}{6} \Delta_Y + R_Y > 0$. Therefore, the Green’s function G exists, with pole at y_0:
Step 1: Blowing up

- Since $R_Y = R(g_Y) > 0$, the conformal laplacian $L = -\frac{1}{6} \Delta_Y + R_Y > 0$. Therefore, the Green’s function G exists, with pole at y_0:

$$LG = 0 \text{ on } Y \setminus \{y_0\},$$

$$G(y, y_0) \sim \text{dist}_Y(y, y_0)^{-2} \text{ as } y \to y_0,$$

$$G(y_1, y_2) > 0.$$
Step 1: Blowing up

• Since $R_Y = R(g_Y) > 0$, the conformal laplacian $L = -\frac{1}{6} \Delta_Y + R_Y > 0$. Therefore, the Green’s function G exists, with pole at y_0:

$$L G = 0 \text{ on } Y \setminus \{y_0\},$$
$$G(y, y_0) \sim \text{dist}_Y(y, y_0)^{-2} \text{ as } y \to y_0,$$
$$G(y_1, y_2) > 0.$$

• Consider the conformal manifold $(N = Y \setminus \{y_0\}, g_N = G^2 g_Y)$ (N is for “neck”).
Step 1: Blowing up

• Since $R_Y = R(g_Y) > 0$, the conformal laplacian $L = -\frac{1}{6} \Delta_Y + R_Y > 0$. Therefore, the Green’s function G exists, with pole at y_0:

$$LG = 0 \text{ on } Y \setminus \{y_0\},$$

$$G(y, y_0) \sim \text{dist}_Y(y, y_0)^{-2} \text{ as } y \to y_0,$$

$$G(y_1, y_2) > 0.$$

• Consider the conformal manifold $(N = Y \setminus \{y_0\}, g_N = G^2 g_Y)$ (N is for “neck”).

• By the formulas for the Green’s function above, g_N is scalar-flat:

$$R_N = G^{-3} LG = 0.$$
• Since \((N, g_N)\) is scalar-flat and Bach-flat, it is \(B^t\)-flat (for any \(t\)).
Step 1, cont.

• Since \((N, g_N)\) is scalar-flat and Bach-flat, it is \(B^t\)-flat (for any \(t\)).

• It is also asymptotically flat: i.e., if we choose \(g_Y\)-normal coordinates \(\{y^i\}\) based at \(y_0\), then the inverted coordinates

\[
x^i = \frac{y^i}{|y|^2}
\]

provide a coordinate system near infinity for \(N\).
Since \((N, g_N)\) is scalar-flat and Bach-flat, it is \(B^t\)-flat (for any \(t\)).

It is also asymptotically flat: i.e., if we choose \(g_Y\)-normal coordinates \(\{y^i\}\) based at \(y_0\), then the inverted coordinates
\[
x^i = \frac{y^i}{|y|^2}
\]
provide a coordinate system near infinity for \(N\). In this system,
\[
(g_N)_{ij} = \delta_{ij} + O(|x|^{-2}).
\]
The next step is to glue \((N, g_N)\) to \((Z \setminus \{z_0\})\):
The next step is to glue \((N, g_N)\) to \((Z \setminus \{z_0\})\):
Step 2: Gluing, cont.

• Since g_N is flat near infinity, i.e., the gluing point, if we want the metrics to match (at least roughly) on the gluing region, we need the metric on Z to be ‘almost’ flat near p_2.
Step 2: Gluing, cont.

- Since g_N is flat near infinity, i.e., the gluing point, if we want the metrics to match (at least roughly) on the gluing region, we need the metric on Z to be ‘almost’ flat near p_2. Therefore, we scale the metric g_Z: given $a, b > 0$ small, let $\tilde{g} = a^{-2} b^{-2} g_Z$:
Since g_N is flat near infinity, i.e., the gluing point, if we want the metrics to match (at least roughly) on the gluing region, we need the metric on Z to be ‘almost’ flat near p_2. Therefore, we scale the metric g_Z: given $a, b > 0$ small, let $\tilde{g} = a^{-2}b^{-2}g_Z$.
Step 2: Gluing, cont.

- On Z, choose g_Z-normal coordinates centered at z_0, and consider the annulus $A_Z = \{ z : b < |z| < 2b \}$.
Step 2: Gluing, cont.

- On Z, choose g_Z-normal coordinates centered at z_0, and consider the annulus $A_Z = \{z : b < |z| < 2b\}$.

- On N, use the coordinates $\{x^i\}$ near infinity to define the annulus $A_N = \{x : a^{-1} < |x| < 2a^{-1}\}$.
Step 2: Gluing, cont.

- On Z, choose g_Z-normal coordinates centered at z_0, and consider the annulus $A_Z = \{z : b < |z| < 2b\}$.

- On N, use the coordinates $\{x^i\}$ near infinity to define the annulus $A_N = \{x : a^{-1} < |x| < 2a^{-1}\}$.

\[(N, g_N) \quad (Z \setminus \{z_0\}, \tilde{g})\]
Then for the rescaled Z we can identify the manifolds along the annuli via the map $\iota : z \mapsto abx$:
Then for the rescaled Z we can identify the manifolds along the annuli via the map $\nu : z \mapsto abx$:

\[X_{a,b} = Y \# Z \]
Step 3: Gluing the metrics

The next step is gluing the metrics to obtain a metric $g_{a,b}$ on $X_{a,b}$.

Let $g_{a,b} = \begin{cases} g_N & \text{on } N \{ |x| > a - 1 \} \\ g_Z & \text{on } Z \{ |z| < 2b \} \end{cases}$.

- On the overlapping region, we can use cut-off functions to glue g_N and \tilde{g} to obtain a new metric $g_{a,b}$.
- The tensor $B + tC$ of $g_{a,b}$ will satisfy $| (B + tC)(g_{a,b}) | = O(a^4b^2) + O(a^6)$, which unfortunately is too crude. (We need the metrics g_N and \tilde{g} to 'match' to higher order.)
Step 3: Gluing the metrics

The next step is gluing the metrics to obtain a metric $g_{a,b}$ on $X_{a,b}$. Let

$$g_{a,b} = \begin{cases}
 g_N \text{ on } N \setminus \{ |x| > a^{-1} \}, \\
 a^{-2} b^{-2} g_Z \text{ on } Z \setminus \{ |z| < 2b \}.
\end{cases}$$
Step 3: Gluing the metrics

The next step is gluing the metrics to obtain a metric $g_{a,b}$ on $X_{a,b}$. Let

$$g_{a,b} = \begin{cases}
 g_N & \text{on } N \setminus \{|x| > a^{-1}\}, \\
 a^{-2}b^{-2}g_Z & \text{on } Z \setminus \{|z| < 2b\}.
\end{cases}$$

- On the overlapping region, we can use cut-off functions to glue g_N and \tilde{g} to obtain a new metric $g_{a,b}$.

M. Gursky (Notre Dame) Joint with J. Viaclovsky (Wisconsin) (29th Annual Geometry Festival Stony Brook University)
Step 3: Gluing the metrics

The next step is gluing the metrics to obtain a metric $g_{a,b}$ on $X_{a,b}$. Let

$$g_{a,b} = \begin{cases}
 g_N \text{ on } N \setminus \{|x| > a^{-1}\}, \\
 a^{-2}b^{-2}g_Z \text{ on } Z \setminus \{|z| < 2b\}.
\end{cases}$$

- On the overlapping region, we can use cut-off functions to glue g_N and \tilde{g} to obtain a new metric $g_{a,b}$.

- The tensor $B + tC$ of $g_{a,b}$ will satisfy

$$|(B + tC)(g_{a,b})| = O(a^4b^2) + O(a^6),$$

which unfortunately is too crude. (We need the metrics g_N and \tilde{g} to ‘match’ to higher order.)
Step 4: The nonlinear map

- We want to perturb the metric $g_{a,b}$ to obtain a B^t-flat metric.
Step 4: The nonlinear map

- We want to perturb the metric $g_{a,b}$ to obtain a B^t-flat metric. To this end, we define

$$P(\theta) = (B + tC)(g_{a,b} + \theta) + \mathcal{K}_{g_{a,b}+\theta}[\Gamma(\theta)],$$

where

$\mathcal{K}_{g_{a,b}+\theta}[\Gamma(\theta)]$ is the conformal Killing operator, and $\Gamma : \mathbb{S}^2(T^*X) \to T^*X$ is a third order linear differential operator.
Step 4: The nonlinear map

- We want to perturb the metric $g_{a,b}$ to obtain a B^t-flat metric. To this end, we define

$$P(\theta) = (B + tC)(g_{a,b} + \theta) + \mathcal{K}_{g_{a,b} + \theta}[\Gamma(\theta)],$$

where

$$\mathcal{K}[\omega]_{ij} = \nabla_i \omega_j + \nabla_j \omega_i - \frac{1}{2}(\delta \omega)g_{ij}$$

is the conformal Killing operator, and
Step 4: The nonlinear map

- We want to perturb the metric $g_{a,b}$ to obtain a B^t-flat metric. To this end, we define

$$P(\theta) = (B + tC)(g_{a,b} + \theta) + K_{g_{a,b} + \theta}[\Gamma(\theta)],$$

where

$$K[\omega]_{ij} = \nabla_i \omega_j + \nabla_j \omega_i - \frac{1}{2}(\delta \omega) g_{ij}$$

is the conformal Killing operator, and

$$\Gamma : S^2(T^*X) \rightarrow T^*X$$

is a third order linear differential operator.
Step 4: The nonlinear map

- We want to perturb the metric $g_{a,b}$ to obtain a B^t-flat metric. To this end, we define

$$P(\theta) = (B + tC)(g_{a,b} + \theta) + \mathcal{K}_{g_{a,b} + \theta}[\Gamma(\theta)],$$

where

$$\mathcal{K}[\omega]_{ij} = \nabla_i \omega_j + \nabla_j \omega_i - \frac{1}{2} (\delta \omega) g_{ij}$$

is the conformal Killing operator, and

$$\Gamma : S^2(T^*X) \to T^*X$$

is a third order linear differential operator.

- The operator Γ (for “gauge-fixing”) is chosen so that the linearized operator is elliptic.
Step 4: The nonlinear map, cont.

• Let

\[S(h) = \frac{d}{ds} P(sh) \bigg|_{s=0} \]

denote the linearized operator.

\[(i) \quad \text{For } \theta \text{ sufficiently small, if } P(\theta) = 0 \text{ then } \hat{g} = g + \theta \text{ is a } Bt \text{-flat metric.} \]

\[(ii) \quad \text{The linearized operator } S \text{ is elliptic.} \]
Step 4: The nonlinear map, cont.

- Let

\[S(h) = \frac{d}{ds} P(sh) \bigg|_{s=0} \]

denote the linearized operator.

Proposition

(i) For \(\theta \) sufficiently small, if

\[P(\theta) = 0 \]

then \(\hat{g} = g_{a,b} + \theta \) is a \(B_t \)-flat metric.
Step 4: The nonlinear map, cont.

- Let
 \[S(h) = \frac{d}{ds} P(sh) \bigg|_{s=0} \]
denote the linearized operator.

Proposition

(i) For \(\theta \) sufficiently small, if

\[P(\theta) = 0 \]

then \(\hat{g} = g_{a,b} + \theta \) is a \(B^t \)-flat metric.
Step 4: The nonlinear map, cont.

Let

\[S(h) = \frac{d}{ds} P(sh) \bigg|_{s=0} \]

denote the linearized operator.

Proposition

(i) For \(\theta \) sufficiently small, if \(P(\theta) = 0 \) then \(\hat{g} = g_{a,b} + \theta \) is a \(B^t \)-flat metric.

(ii) The linearized operator \(S \) is elliptic.
To find a zero of the nonlinear map, we apply an implicit function theorem-type argument. The key to making this work is the \textit{surjectivity} of the linearized operator S when a, b are chosen sufficiently small.

By a standard limiting argument, surjectivity of S can be reduced to the surjectivity of S_N and S_Z; i.e., the linearized operator on the 'neck' and the punctured manifold $Z \{ z_0 \}$.

As in other gluing results, we work in weighted function spaces, where the weight is (roughly) the distance function from a fixed point. In general, however, the cokernel will be non-trivial.
Step 5: The linearized operator

• To find a zero of the nonlinear map, we apply an implicit function theorem-type argument. The key to making this work is the surjectivity of the linearized operator S when a, b are chosen sufficiently small.

• By a standard limiting argument, surjectivity of S can be reduced to the surjectivity of S_N and S_Z; i.e., the linearized operator on the ‘neck’ and the punctured manifold $Z \setminus \{z_0\}$.

As in other gluing results, we work in weighted function spaces, where the weight is (roughly) the distance function from a fixed point. In general, however, the cokernel will be non-trivial.
To find a zero of the nonlinear map, we apply an implicit function theorem-type argument. The key to making this work is the surjectivity of the linearized operator S when a, b are chosen sufficiently small.

By a standard limiting argument, surjectivity of S can be reduced to the surjectivity of S_N and S_Z; i.e., the linearized operator on the ‘neck’ and the punctured manifold $Z \setminus \{z_0\}$.

As in other gluing results, we work in weighted function spaces, where the weight is (roughly) the distance function from a fixed point.
Step 5: The linearized operator

- To find a zero of the nonlinear map, we apply an implicit function
 theorem-type argument. The key to making this work is the *surjectivity*
 of the linearized operator S when a, b are chosen sufficiently small.

- By a standard limiting argument, surjectivity of S can be reduced to the
 surjectivity of S_N and S_Z; i.e., the linearized operator on the ‘neck’ and
 the punctured manifold $Z \setminus \{z_0\}$.

- As in other gluing results, we work in weighted function spaces, where
 the weight is (roughly) the distance function from a fixed point.

- In general, however, the cokernel will be non-trivial.
Equivariant gluing

- To reduce the cokernel, we impose symmetries and perform an equivariant gluing.
• To reduce the cokernel, we impose symmetries and perform an equivariant gluing.

• We assume Y and Z are either $(\mathbb{C}P^2, g_{FS})$ or $(S^2 \times S^2, g_{prod})$.
Equivariant gluing

• To reduce the cokernel, we impose symmetries and perform an equivariant gluing.

• We assume Y and Z are either $(\mathbb{C}P^2, g_{FS})$ or $(S^2 \times S^2, g_{prod})$.

• Each has a torus action,
Equivariant gluing

• To reduce the cokernel, we impose symmetries and perform an equivariant gluing.

• We assume Y and Z are either $(\mathbb{C}P^2, g_{FS})$ or $(S^2 \times S^2, g_{prod})$.

• Each has a torus action, and a \mathbb{Z}_2-action (on $S^2 \times S^2$ this is given by interchanging the S^2-factors).
Equivariant gluing

- To reduce the cokernel, we impose symmetries and perform an equivariant gluing.

- We assume Y and Z are either $(\mathbb{C}P^2, g_{FS})$ or $(S^2 \times S^2, g_{prod})$.

- Each has a torus action, and a \mathbb{Z}_2-action (on $S^2 \times S^2$ this is given by interchanging the S^2-factors).

- From now on we assume these symmetries for all metrics, functions, etc.
The linearized operator on $(\mathbb{Z} \setminus \{z_0\}, g_z)$

Theorem

(G- Viaclovsky, '12) For $t < 0$, the cokernel of $S = S_z$ is

$$c \cdot g_z$$

(which comes from scaling).
Splitting Proposition

Assume

$$S_N h = 0,$$

and write $h = z + fg_N$, where z is trace-free.
Splitting Proposition

Assume

\[S_N h = 0, \]

and write \(h = z + fg_N \), where \(z \) is trace-free. Then there is a one-form \(\omega_1 \) such that

\[z = \mathcal{K}_{g_N} \omega_1, \]

and

\[\Delta f = -\frac{1}{3} \langle Ric, \mathcal{K} \omega_1 \rangle. \]
Splitting Proposition

Assume

\[S_N h = 0, \]

and write \(h = z + f g_N \), where \(z \) is trace-free. Then there is a one-form \(\omega_1 \) such that

\[z = K_{g_N} \omega_1, \]

and

\[\Delta f = -\frac{1}{3} \langle \text{Ric}, K \omega_1 \rangle. \]

Furthermore, in AF coordinates

\[\omega_1 \sim \sum x^i dx^i, \quad f \sim c_0 + \frac{1}{|x|^2}, \]
Splitting Proposition

Assume

\[S_N h = 0, \]

and write \(h = z + fg_N \), where \(z \) is trace-free. Then there is a one-form \(\omega_1 \) such that

\[z = \mathcal{K}_{g_N} \omega_1, \]

and

\[\Delta f = -\frac{1}{3} \langle Ric, \mathcal{K} \omega_1 \rangle. \]

Furthermore, in AF coordinates

\[\omega_1 \sim \sum x^i dx^i, \quad f \sim c_0 + \frac{1}{|x|^2}. \]

• In fact, \(h \) decays quadratically.
Using cut-off functions, we have two globally defined “approximate” cokernel elements:

\[\kappa_1 \] (corresponding to cokernel on \(N \)),

\[\kappa_2 \] (cut-off) \(g_{a, b} \) (corresponding to cokernel on \(\mathbb{Z} \)).
Using cut-off functions, we have two globally defined “approximate” cokernel elements:

\[\kappa_1 \text{ (corresponding to cokernel on } N) , \]

\[\kappa_2 = (\text{cut-off}) \cdot g_{a,b} \text{ (corresponding to cokernel on } Z) . \]
Using cut-off functions, we have two globally defined “approximate” cokernel elements:

\[\kappa_1 \] (corresponding to cokernel on \(N \)),

\[\kappa_2 = (\text{cut-off}) \cdot g_{a,b} \] (corresponding to cokernel on \(Z \)).

For \(a, b \) sufficiently small we can then solve

\[P(\theta) = \lambda_1 \kappa_1 + \lambda_2 \kappa_2. \]
Key Proposition

Take $a = b$. Then

$$\lambda_1 = \mu a^4 + O(a^5),$$

where

$$\mu = \left\{ \frac{2}{3} W(y_0) \ast W(z_0) + 4tR(z_0)\text{mass}(g_N) \right\} |S^3|.$$
Key Proposition

Take $a = b$. Then

$$\lambda_1 = \mu a^4 + O(a^5),$$

where

$$\mu = \left\{ \frac{2}{3} W(y_0) \ast W(z_0) + 4tR(z_0)\operatorname{mass}(g_N) \right\} |S^3|.$$

• In particular, for $a > 0$ small we can choose $t = t(a)$ so that

$$\lambda_1 = 0.$$
Solving modulo the cokernel(s), cont.

Key Proposition

Take $a = b$. Then

$$\lambda_1 = \mu a^4 + O(a^5),$$

where

$$\mu = \left\{ \frac{2}{3} W(y_0) \ast W(z_0) + 4tR(z_0)\text{mass}(g_N) \right\}|S^3|.$$

- In particular, for $a > 0$ small we can choose $t = t(a)$ so that

$$\lambda_1 = 0.$$

Hence,

$$P(\theta) = \lambda_2 \kappa_2 = \lambda_2(\text{cut-off})g_a.$$
Key Proposition
Take \(a = b \). Then

\[
\lambda_1 = \mu a^4 + O(a^5),
\]

where

\[
\mu = \left\{ \frac{2}{3} W(y_0) \star W(z_0) + 4tR(z_0)\text{mass}(g_N) \right\} |S^3|.
\]

• In particular, for \(a > 0 \) small we can choose \(t = t(a) \) so that

\[
\lambda_1 = 0.
\]

Hence,

\[
P(\theta) = \lambda_2 \kappa_2 = \lambda_2(\text{cut-off})g_a.
\]

• Then an easy argument shows \(\lambda_2 = 0 \); i.e.,

\[
P(\theta) = 0.
\]
Statement of the Main Result

Theorem

(G - Viaclovsky) The following 4-manifolds admit a (toric-invariant) B^t-flat metric:

\[\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}, \mathbb{CP}^2 \# 2 \overline{\mathbb{CP}^2}, 2 \# S^2 \times S^2. \]
Theorem

(G - Viaclovsky) The following 4-manifolds admit a (toric-invariant) B^t-flat metric:

$\mathbb{CP}^2 \# \mathbb{CP}^2, \mathbb{CP}^2 \# 2 \mathbb{CP}^2, 2 \# S^2 \times S^2$.

Moreover, by taking a sufficiently small one can take t arbitrarily close to

$$t_0 = \frac{-1}{6R(z_0)\text{mass}(g_N)} W(z_0) \ast W(y_0).$$
Statement of the Main Result

Theorem

(G - Viaclovsky) The following 4-manifolds admit a (toric-invariant) B^t-flat metric:

$$\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}, \mathbb{C}P^2 \# 2 \overline{\mathbb{C}P^2}, 2 \# S^2 \times S^2.$$

Moreover, by taking a sufficiently small one can take t arbitrarily close to

$$t_0 = \frac{-1}{6R(z_0)\text{mass}(\gamma_N)} W(z_0) \star W(y_0).$$

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value(s) of t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{C}P^2 # \overline{\mathbb{C}P^2}$</td>
<td>$-1/3$</td>
</tr>
<tr>
<td>$S^2 \times S^2 # \overline{\mathbb{C}P^2} = \mathbb{C}P^2 # 2 \overline{\mathbb{C}P^2}$</td>
<td>$-1/3, -1.1892...$</td>
</tr>
<tr>
<td>$2 # S^2 \times S^2$</td>
<td>$-0.3784...$</td>
</tr>
</tbody>
</table>
• Other gluing configurations are possible by imposing other discrete group actions.
• Other gluing configurations are possible by imposing other discrete group actions.

• The mass of the blow-up of $S^2 \times S^2$ was recently computed by J. Viaclovsky (to appear).
• Other gluing configurations are possible by imposing other discrete group actions.

• The mass of the blow-up of $S^2 \times S^2$ was recently computed by J. Viaclovsky (to appear).

• As a consequence of the theorem, we have the following dichotomy:
• Other gluing configurations are possible by imposing other discrete group actions.

• The mass of the blow-up of $S^2 \times S^2$ was recently computed by J. Viaclovsky (to appear).

• As a consequence of the theorem, we have the following dichotomy:

 1. There is a critical metric for all t close to t_0; or
• Other gluing configurations are possible by imposing other discrete group actions.

• The mass of the blow-up of $S^2 \times S^2$ was recently computed by J. Viaclovsky (to appear).

• As a consequence of the theorem, we have the following dichotomy:
 1. There is a critical metric for all t close to t_0; or
 2. There is a critical metric for $t = t_0$ (hence a $1 - D$ moduli space parametrized by a).
• Other gluing configurations are possible by imposing other discrete group actions.

• The mass of the blow-up of $S^2 \times S^2$ was recently computed by J. Viaclovsky (to appear).

• As a consequence of the theorem, we have the following dichotomy:
 1. There is a critical metric for all t close to t_0; or
 2. There is a critical metric for $t = t_0$ (hence a $1 - D$ moduli space parametrized by a).

• Trying to determine which happens is ongoing work.