MAT 542: COMPLEX ANALYSIS I
OFFICIAL SYLLBUS

(1) The field of complex numbers, geometric representation of complex numbers
(2) Analytic functions
 • Definition, Cauchy-Riemann equations
 • Elementary theory of power series, uniform convergence
 • Elementary functions: rational, exponential and trigonometric functions
 • The logarithm
(3) Analytic functions as mappings
 • Conformality
 • Linear fractional transformations
 • Elementary conformal mappings
(4) Complex integration
 • Line integrals and Cauchy’s theorem for disk and rectangle
 • Cauchy’s integral formula
 • Cauchy’s inequalities
 • Morera’s theorem, Liouville’s theorem and fundamental theorem of algebra
 • The general form of Cauchy’s theorem
(5) Local properties of analytic functions
 • Removable singularities, Taylor’s theorem
 • Zeros and poles, classification of isolated singularities
 • The local mapping theorem
 • The maximum modulus principle, Schwarz’s lemma
(6) The calculus of residues
 • The residue theorem
 • The argument principle
 • Rouche’s theorem
 • Evaluation of definite integrals
(7) Power series
 • Weierstrass theorem
 • The Taylor and Laurent series
 • Partial fractions and infinite products
 • Normal families
(8) The Riemann mapping theorem
(9) Harmonic functions
 • The mean-value property
 • Harnack’s inequality
 • The Dirichlet problem
REFERENCES

E-mail address: dror@math.sunysb.edu

DEPARTMENT OF MATHEMATICS
STONY BROOK UNIVERSITY
STONY BROOK, NY 11794-3651