

This is a first course in real analysis. The objective is to establish the ground work upon which great part of modern mathematics is based. The main topics to be covered are: 1) the basics of the real number system and metric spaces; 2) ordinary differential equantions; 3) calculus on several dimensions and inverse and implicit function theorems and 4) measure theory. A detailed syllabus can be seen following the link below.

Instructor: André de Carvalho Math Tower 4-103 tel. 632-8266 E-mail: <u>andre@math.sunysb.edu</u>

Office hours: Wed 3:30-4:30pm, Thu 11am-12pm or by appointment.

Course Syllabus

Homework: Homework will be assigned approximately weekly and collected one week after having been assigned. Click <u>here</u> for the assignement. Doing the homework is *fundamental* part of the course work. In particular, it will count for 30% of the overall course grade.

Midterm Exam: Friday, October 12th, in class, including all the material we manage to cover until then.

Final Exam: The final exam is Friday, Dec. 14th, 12am - 3pm in P-131.

Final Grade: 30% MT + 30% HW + 40% Final

- 1. Advanced Calculus and Ordinary Differential Equations (ODE)
 - Review of the real number system
 - Metric spaces, continuity, uniform convergence
 - Contraction mapping principle
 - Existence and uniqueness theorems for ODE
 - Global existence theorem for linear ODE
 - Linear transformations, orthogonal projections and matrix exponential
 - Linear systems of ODE with constant coefficients
 - Derivatives in R^{*n*} and in Banach spaces
 - Newton's method and the inverse function theorem
 - The implicit function theorem
- 2. Measure Theory
 - Riemann integral in \mathbb{R}^n
 - Cantor-type sets, dyadic decompositions in \mathbb{R}^n
 - Measures arising from volume functions on open sets
 - Basic properties of the Lebesgue measure
 - Measurable and integrable functions
 - Convergence theorems for Lebesgue integrals: monotone and dominated convergence theorems and Fatou's lemma
 - Criterion for Riemann integrability
- 3. Additional Topics
 - Iterated integrals; Tonelli's and Fubini's Theorems
 - Riesz Representation Theorem
 - Radon-Nikodym Theorem

The main reference is Geller's book. A rough timetable of the pace to cover the book is:

Ch. 1	2 ¹ / ₂ weeks
Ch. 2	2 weeks
Ch. 3	3 ¹ / ₂ weeks
Ch. 4	2 ¹ / ₂ weeks
Ch. 5	2 ¹ / ₂ weeks
Ch. 6	Homework
Ch. 7 & 8	2 ¹ / ₂ weeks

References:

Daryl Geller, A first graduate course in real analysis. Part I,

Solutions Custom Publishing (to be distributed in class)

- Walter Rudin, *Principles of mathematical analysis*, 3rd ed., McGraw-Hill, New York 1976
 Walter Rudin, *Real and complex analysis*, 3rd ed., McGraw-Hill, New York 1987

Homework Sets:

1) Chapter 1 - Due Friday, Sept. 7th.

Section 1) 3, 7, 9, 10, 11

Section 2) 1, 5, 6, 7

2) Chapter 1 - Due Friday, Sept. 14th.

Section 3) 1, 3, 7, 8

Section 4) 2, 4

Section 5) 3, 4, 7

3) Chapter 2 - Due Friday, Sept. 28th.

Section 1) 3, 5, 6

Section 2) 2, 4, 7, 10

Section 3) 1, 3

4) Chapter 2 - Due Friday, Oct. 5th.

Section 3) 4, 6, 7, 9

5) Chapter 3 - Due Friday, Oct. 12th.

Section 1) 2, 6

Section 2) 1, 3

Section 3) 4, 5, 6, 7

6) Chapter 3 - Due Friday, Oct. 26th.

Section 5) 2

Section 6) 3, 7, 9

Section 8) 2, 8

7) Chapter 4 - Due Monday, Nov. 12th.

Section 1) 1, 3

Section 2) 1, 2,

Section 3) 2, 3, 4, 5

Section 4) 2

- Section 5) 3, 4, 5
- Section 6) 1, 3, 5
- Section 7) 1, 2, 3

8) Chapter 5 - Due Monday, Nov. 26th.

Section 2) 1, 2, 3, 4, 7, 8

Section 3) 3, 4, 5

Section 5) 2, 3, 4

9) Review Problems - Due Wednesday, Dec. 12th. to Yasuhiro Tanaka.