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Welcome to MAT 310

Textbook: Linear Algebra Done Right by S. Axler.
Lecturer: Sabyasachi Mukherjee
Office: Math Tower 4115

Office Hours: W 12:00pm-02:00pm in my office, Th
1:00pm- 2:00pm in MLC (S235), or by appt.

E-mail: sabya@math.stonybrook.edu

Course Overview

This course is a continuation of MAT 211. We will cover
fundamentals of finite dimensional vector spaces, linear
maps, dual spaces, bilinear functions, and inner products. A
tentative weekly plan for the course is here.

Information for students willing to move up to
MAT 315

We will cover approximately the same material in the first
couple of weeks in MAT 310 and MAT 315. On Thursday,
February 14, we will have an exam in class which will decide
whether a student would stay in MAT 310 or be allowed to
move up to MAT 315.

Homework

Homework assignments will be posted here and on


http://www.math.stonybrook.edu/~sabya/mat310-spr19/index.php?page=home
mailto:sabya@math.stonybrook.edu

BlackBoard. Please hand them in to your recitation instructor,
Yoon-Joo Kim, the following week. Please note that your
recitation instructor will NOT accept late homework.

Quizzes

There will be a short quiz in your recitation session every
other week. The first quiz will be given in the week of Feb 11 -
Feb 15.

Exams and Grading

There will be two midterms, and a final exam (dates here),
whose weights in the overall grade are listed below.

15% Homework
10% Quizzes

20% Midterm 1
20% Midterm 2

35% Final Exam (cumulative)

Copyright 2008 Stony Brook University
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General Information

Information for students with disabilities

If you have a physical, psychological, medical, or learning
disability that may impact your course work, please contact
Disability Support Services at (631) 632-6748 or
http://studentaffairs.stonybrook.edu/dss/. They will determine
with you what accommodations are necessary and
appropriate. All information and documentation is confidential.

Students who require assistance during emergency
evacuation are encouraged to discuss their needs with their
professors and Disability Support Services. For procedures
and information go to the following website:
http://www.sunysb.edu/ehs/fire/disabilities.shtml

Copyright 2008 Stony Brook University
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Syllabus and Weekly Plan

Week of Topics

Jan 28 Chapter 1. Vector spaces

Feb 4 Chapter 2. Finite-Dimensional
Vector Spaces

Chapter 2. Finite-Dimensional
Feb 11 Vector Spaces

Exam in class on Thursday

Feb 18 Chapter 3. Linear Maps
Feb 25 Chapter 3. Linear Maps
Midterm I, Tue. March 5
March 4
Chapter 5. Eigenvalues and
Eigenvectors
March 11 Chapter 5. Eigenvalues and
Eigenvectors
March 18 Spring Break!
March 25 Chapter 6. Inner-Product Spaces
April 1

Chapter 6. Inner-Product Spaces

April 8



http://www.math.stonybrook.edu/~sabya/mat310-spr19/index.php?page=home

Midterm Il Review

Midterm Il, Tue. April 16
April 15
Chapter 7. Operators on Inner-
Product Spaces: Unitary operators

Chapter 7. Operators on Inner-
Product Spaces: Normal operators
and Spectral theorem

April 22

April 29 Chapter 8. Operators on Complex
Vector Spaces

May 6 Chapter 10. Trace and Determinant

Final Exam
Thursday, May 16, 5:30pm-8:00pm

Copyright 2008 Stony Brook University
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Homework

Homework 1 (due on Tuesday, Feb 12): Problems 3, 4, 8,
9, 14, and 15 of this sheet.

Homework 2 (due on March 5/6, depending on your
recitation): Problems 2, 4, 8, 11, 12, and 14 of this sheet.

Homework 3 (due on March 26/27, depending on your
recitation): Problems 1, 3, 7, 8, 14, and 22 of this sheet.

Homework 4 (due on April 2/3, depending on your
recitation): Problems 2, 4, 6, 9, 10, and 12 of this sheet.

Homework 5 (due on April 16/17, depending on your
recitation): Problems 4, 5, 6, 9, 10, 16, 22, 24, 29, and 30 of
this sheet.

Homework 6 (due on May 7/8, depending on your
recitation): Problems 1(a), 6, 7, and 11 of this sheet.

Copyright 2008 Stony Brook University


http://www.math.stonybrook.edu/~sabya/mat310-spr19/index.php?page=home

Q\\\H MAT 310: Linear Algebra

Stony Brook  Spring 2019
University

Home

General Information
Syllabus Exams

Homework _ _
Exams There will be a mandatory exam in class on Thursday,

February 14 to determine which students would be allowed
to move up to MAT 315. However, this exam will NOT
contribute to the final grade.

Here is the placement exam with solutions.

There will be two midterms and a final exam. The time of
these exams are as follows:

Midterm 1: Tuesday, March 5, 2:30pm-3:50pm (in class)

Here are some practice problems for midterm 1, and here
are the solutions.

Here are the solutions to Midterm 1 problems.
Midterm 2: Tuesday, April 16, 2:30pm-3:50pm (in class)

Here are some practice problems for midterm 2, and here
are the solutions.

Here are the solutions to Midterm 2 problems.
Final exam: Thursday, May 16, 5:30pm-8:00pm

Here are some practice problems for the final exam, and
here are the solutions.

Copyright 2008 Stony Brook University
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In all the problems, you may assume that F is the set of real numbers.

Exercises
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Exercises

1.

10.

11.

Suppose a and b are real numbers, not both 0. Find real numbers
¢ and d such that
1/(a + bi) = c + di.

Show that
-1+ /3i
2

is a cube root of 1 (meaning that its cube equals 1).
Prove that —(—v) = v for every v € V.
Prove thatifa e F, v e V,and av =0,thena =0 orv = 0.

For each of the following subsets of F3, determine whether it is
a subspace of F3:

(@  {(x1,x2,x3) €F3:x7 + 2x2 + 3x3 = 0};

b)  {(x1,x2,x3) €F3:x1 + 2xp + 3x3 = 4};

(@©  {(x1,x2,x3) € FF 1 x1x2x3 = 0};

d  {(x1,x2,x3) € F3:x; =5x3).

Give an example of a nonempty subset U of R? such that U is
closed under addition and under taking additive inverses (mean-
ing —u € U whenever u € U), but U is not a subspace of R?.

Give an example of a nonempty subset U of R? such that U is
closed under scalar multiplication, but U is not a subspace of R?.

Prove that the intersection of any collection of subspaces of V' is
a subspace of V.

Prove that the union of two subspaces of V is a subspace of V if
and only if one of the subspaces is contained in the other.

Suppose that U is a subspace of V. What is U + U?

Is the operation of addition on the subspaces of V commutative?
Associative? (In other words, if Uy, U, U3 are subspaces of V, is
Ui +U,=U+U1? Is(Uy +Up) + U3 = Uy + (Up + U3z)?)


SABYASACHI MUKHERJEE
In all the problems, you may assume that F is the set of real numbers.
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CHAPTER 1. Vector Spaces

12.

13.

14.

15.

Does the operation of addition on the subspaces of V have an
additive identity? Which subspaces have additive inverses?

Prove or give a counterexample: if Uy, Uy, W are subspaces of V
such that
Ul+W=U+W,

then U; = Us.
Suppose U is the subspace of P(F) consisting of all polynomials

p of the form
p(z) =az®+bz’,

where a,b € F. Find a subspace W of P(F) such that P(F) =
UsoW.

Prove or give a counterexample: if Uy, Up, W are subspaces of V
such that
V=UeW and V=UeW,

then U; = U,.



In all the problems, you may assume that F is the set of all real numbers.

Exercises
Exercises
1. Prove that if (vq,...,Vv,) spans V, then so does the list
(V1 —=V2,V2 =V¥3,...,Vn-1— Vn,Vn)

obtained by subtracting from each vector (except the last one)
the following vector.

2. Prove that if (vq,...,Vv,) is linearly independent in V, then so is
the list
(V1= V2, V2 = V3,..., V-1~ Vn, Vn)

obtained by subtracting from each vector (except the last one)
the following vector.

3. Suppose (vi,...,Vy) is linearly independent in V and w € V.
Prove that if (vi + w,...,v,; + W) is linearly dependent, then
w € span(Vvi,...,Vn).

4. Suppose m is a positive integer. Is the set consisting of 0 and all

polynomials with coefficients in F and with degree equal to m a
subspace of P(F)?

5. Prove that F® is infinite dimensional.

6. Prove that the real vector space consisting of all continuous real-
valued functions on the interval [0, 1] is infinite dimensional.

7. Prove that V is infinite dimensional if and only if there is a se-
quence v1,V>,... of vectorsin V such that (v1,...,Vvy) is linearly
independent for every positive integer n.

8. Let U be the subspace of R°> defined by
U = {(x1,X2,X3,X4,X5) €R°> :x; = 3x7 and x3 = 7x4}.
Find a basis of U.

9. Prove or disprove: there exists a basis (po, p1, p2, p3) of P3(F)
such that none of the polynomials pg, p1, p2, p3 has degree 2.

10.  Suppose that V is finite dimensional, with dim V = n. Prove that
there exist one-dimensional subspaces Uy, ..., U, of V such that

V=U&- - Uy


SABYASACHI MUKHERJEE
In all the problems, you may assume that F is the set of all real numbers.
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CHAPTER 2. Finite-Dimensional Vector Spaces

11.

12.

13.

14.

15.

16.

17.

Suppose that V is finite dimensional and U is a subspace of V
such that dimU = dim V. Prove that U = V.

Suppose that pg, p1,..., pm are polynomials in 2, (F) such that
pj(2) = 0 for each j. Prove that (po, p1,...,Pm) is not linearly
independent in P, (F).

Suppose U and W are subspaces of R® such that dimU = 3,
dimW =5,and U + W = R8. Prove that U n W = {0}.

Suppose that U and W are both five-dimensional subspaces of R?.
Prove that U n W # {0}.

You might guess, by analogy with the formula for the number
of elements in the union of three subsets of a finite set, that
if Uy, U>, Uz are subspaces of a finite-dimensional vector space,
then

dim(U; + Uy + Us)
=dimU; + dim U, + dim Us
—dim(U; nUz) — dim(U; N Uz) — dim(U» N Us3)
+ dim(U; N Uz N Us).

Prove this or give a counterexample.

Prove that if V is finite dimensional and Uy, ..., U,, are subspaces
of V, then

dim(U; +---+Uy) <dimU; + - - - + dim Uyy,.

Suppose V is finite dimensional. Prove that if Uy,...,U,, are
subspaces of V such that V =U; @ - - - & Uy, then

dimV =dimU; + - - - + dim Uyy,.

This exercise deepens the analogy between direct sums of sub-
spaces and disjoint unions of subsets. Specifically, compare this
exercise to the following obvious statement: if a finite set is writ-
ten as a disjoint union of subsets, then the number of elements in
the set equals the sum of the number of elements in the disjoint
subsets.
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FExercises

Show that every linear map from a one-dimensional vector space
to itself is multiplication by some scalar. More precisely, prove
thatif dimV =1 and T € £L(V,V), then there exists a € F such
that Tv = av forallv € V.

Give an example of a function f: R? — R such that
flav) =afv)
for all @ € R and all v € R? but f is not linear.

Suppose that V is finite dimensional. Prove that any linear map
on a subspace of V can be extended to a linear map on V. In
other words, show that if U is a subspaceof Vand S € L(U,W),
then there exists T € £L(V,W) such that Tu = Su for all u € U.

Suppose that T is a linear map from V to F. Prove thatif u € V
is not in null T, then

V=nullT @ {au:a € F}.

Suppose that T € L(V,W) is injective and (vy,...,Vy) is linearly
independent in V. Prove that (Tv1,...,Tvy) is linearly indepen-
dent in W.

Prove thatif S1,..., S, are injective linear maps such that$; ... S,
makes sense, then S ...S, is injective.

Prove that if (vi,...,vy) spans V and T € L(V, W) is surjective,
then (Tvy,...,Tvy,) spans W.

Suppose that V is finite dimensional and that T € £L(V, W). Prove
that there exists a subspace U of V such that U nnullT = {0}
andrangeT = {Tu:u € U}.

Prove that if T is a linear map from F? to F? such that
null T = {(x1,x2,x3,x4) € F* 1 x1 = 5xp and x3 = 7x4},

then T is surjective.

Exercise 2 shows that
homogeneity alone is
not enough to imply
that a function is a
linear map. Additivity
alone is also not
enough to imply that a
function is a linear
map, although the
proof of this involves
advanced tools that are
beyond the scope of
this book.
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CHAPTER 3. Linear Maps

10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove that there does not exist a linear map from F°> to F2 whose
null space equals

{(x1,Xx2,X3,X4,Xx5) € F°: x1 = 3xp and x3 = x4 = Xs5}.

Prove that if there exists a linear map on V whose null space and
range are both finite dimensional, then V is finite dimensional.

Suppose that V and W are both finite dimensional. Prove that
there exists a surjective linear map from V onto W if and only if
dimW < dimV.

Suppose that V and W are finite dimensional and that U is a
subspace of V. Prove that there exists T € L(V,W) such that
nullT = U if and only if dimU > dimV — dim W.

Suppose that W is finite dimensional and T € L£(V,W). Prove
that T is injective if and only if there exists S € L(W,V) such
that ST is the identity map on V.

Suppose that V is finite dimensional and T € L(V,W). Prove
that T is surjective if and only if there exists § € L(W,V) such
that TS is the identity map on W.

Suppose that U and V are finite-dimensional vector spaces and
that S € L(V,W), T € L(U,V). Prove that

dimnull ST < dimnull S + dimnull T.

Prove that the distributive property holds for matrix addition
and matrix multiplication. In other words, suppose A, B, and C
are matrices whose sizes are such that A(B + C) makes sense.
Prove that AB + AC makes sense and that A(B + C) = AB + AC.

Prove that matrix multiplication is associative. In other words,
suppose A, B, and C are matrices whose sizes are such that
(AB)C makes sense. Prove that A(BC) makes sense and that
(AB)C = A(BC).
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19.

20.

21.

22.

23.

24.

25.

Suppose T € L(F",F™) and that

aln e Aln
M(T) = : : :

a/m,l " a,m,n

where we are using the standard bases. Prove that

T(xX1,...,xn) = (@11X1+ - ~+A1nXn, ..o, AM1 X1+ - -+ AmnXn)
for every (x1,...,xn) € F™.
Suppose (vi,...,Vy) is a basis of V. Prove that the function

T:V — Mat(n, 1,F) defined by
TV = M(v)

is an invertible linear map of V onto Mat(n, 1,F); here M(v) is
the matrix of v € V with respect to the basis (vi,...,vn).

Prove that every linear map from Mat(n, 1,F) to Mat(m, 1,F) is
given by a matrix multiplication. In other words, prove that if
T € L(Mat(n,1,F),Mat(m,1,F)), then there exists an m-by-n
matrix A such that TB = AB for every B € Mat(n, 1,F).

Suppose that V is finite dimensional and S, T € L(V). Prove that
ST is invertible if and only if both § and T are invertible.

Suppose that V is finite dimensional and S, T € L(V). Prove that
ST =Iifandonlyif TS = 1.

Suppose that V is finite dimensional and T € L(V). Prove that
T is a scalar multiple of the identity if and only if ST = TS for
every S € L(V).

Prove that if V is finite dimensional with dimV > 1, then the set
of noninvertible operators on V' is not a subspace of L(V).

This exercise shows
that T has the form
promised on page 39.

11:45 am, Jan 11, 2005
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26.

Suppose n is a positive integer and a;; € F for i,j = 1,...,n.
Prove that the following are equivalent:

(a) The trivial solution x; = - - - = x5, = 0 is the only solution
to the homogeneous system of equations

M=

aykxk =0

~
Il

1

M=

ankXk = 0.
k

Il
—

(b) For every c1,...,cn € F, there exists a solution to the sys-
tem of equations

n
D arrxk =C
k=1

n
z a,n,kxk = Cn.
k=1

Note that here we have the same number of equations as vari-
ables.
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CHAPTER 5. Eigenvalues and Eigenvectors

Exercises

1. Suppose T € L(V). Prove that if Uy,..., U, are subspaces of V
invariant under T, then U; + - - - + Uy, is invariant under T.

2. Suppose T € L(V). Prove that the intersection of any collection
of subspaces of V invariant under T is invariant under T.

3. Prove or give a counterexample: if U is a subspace of V that is
invariant under every operator on V, then U = {0} or U = V.

4. Suppose that S, T € L(V) are such that ST = TS. Prove that
null(T — AI) is invariant under S for every A € F.

5. Define T € £L(F?) by

T(w,z) =(z,W).

Find all eigenvalues and eigenvectors of T.

6. Define T € £L(F3) by

T(z1,22,23) = (222,0,523).

Find all eigenvalues and eigenvectors of T.

7. Suppose n is a positive integer and T € L(F") is defined by

T(X1yeesXn) = X1+ +Xpyooey X1+ - - + Xn);

in other words, T is the operator whose matrix (with respect to
the standard basis) consists of all 1’s. Find all eigenvalues and
eigenvectors of T.

8. Find all eigenvalues and eigenvectors of the backward shift op-
erator T € L(F®) defined by

T(z1,22,23,...) = (22,23,...).

9. Suppose T € L(V) and dimrangeT = k. Prove that T has at
most k + 1 distinct eigenvalues.

10. Suppose T € L£(V) is invertible and A € F \ {0}. Prove that A is

an eigenvalue of T if and only if % is an eigenvalue of T~1.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Suppose S, T € L(V). Prove that ST and TS have the same eigen-
values.

Suppose T € L(V) is such that every vector in V is an eigenvector
of T. Prove that T is a scalar multiple of the identity operator.

Suppose T € L(V) is such that every subspace of V with di-
mension dimV — 1 is invariant under T. Prove that T is a scalar
multiple of the identity operator.

Suppose S, T € L(V) and S is invertible. Prove that if p € P(F)
is a polynomial, then

p(STS™) =Sp(T)S~!.

Suppose F =C, T € L(V),p € P(C), and a € C. Prove that a is
an eigenvalue of p(T) if and only if a = p(A) for some eigenvalue
Aof T.

Show that the result in the previous exercise does not hold if C
is replaced with R.

Suppose V is a complex vector space and T € L(V). Prove
that T has an invariant subspace of dimension j for each j =
1,...,dimV.

Give an example of an operator whose matrix with respect to
some basis contains only 0’s on the diagonal, but the operator is
invertible.

Give an example of an operator whose matrix with respect to
some basis contains only nonzero numbers on the diagonal, but
the operator is not invertible.

Suppose that T € £(V) has dimV distinct eigenvalues and that
S € L(V) has the same eigenvectors as T (not necessarily with
the same eigenvalues). Prove that ST = TS.

Suppose P € £(V) and P? = P. Prove that V = null P @ range P.

Suppose V = Uae W, where U and W are nonzero subspaces of V.
Find all eigenvalues and eigenvectors of Py w.

These two exercises
show that 5.16 fails
without the hypothesis
that an upper-
triangular matrix is
under consideration.
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CHAPTER 6. Inner-Product Spaces

Exercises

1. Prove that if x, y are nonzero vectors in R?, then

(x,y) = lx|llyll cos 6,

where 0 is the angle between x and y (thinking of x and y as
arrows with initial point at the origin). Hint: draw the triangle
formed by x, v, and x — y; then use the law of cosines.

2. Suppose u,v € V. Prove that (u,v) = 0 if and only if
lull < llu+avll
for all a € F.
3. Prove that
n > n o n bj2
(X ) = (Xiaf) (2 )
Jj=1 Jj=1 j=1
for all real numbers aq,...,a, and by,..., by.
4. Suppose u,v € V are such that
lull =3, llu+vil=4, |lu-vl=6.
What number must ||v| equal?

5. Prove or disprove: there is an inner product on R? such that the
associated norm is given by

1(x1,x2) 1l = [x1] + [ x2]
for all (x1,x>) € R2.
6. Prove that if V is a real inner-product space, then
vy = M VIE - v
4
for all u,v € V.
7. Prove that if V is a complex inner-product space, then

_ e+ 22—l = vIIP + llu+ ivIi%i = Jlu - ivi®i

(u,v) 4

for all u,v € V.
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10.

11.

12.

13.

A norm on a vector space U is a function || ||: U — [0, o) such
that ||lu|l = Oif and only if u = 0, ||xu|| = |x]|||u| for all x € F
and all u € U, and ||lu + V|| < |lul|l + ||v] for all u,v € U. Prove
that a norm satisfying the parallelogram equality comes from
an inner product (in other words, show that if || || is a norm
on U satisfying the parallelogram equality, then there is an inner
product {, ) on U such that ||u| = (u,u)? for all u € U).

Suppose n is a positive integer. Prove that

< 1 sinx sin2x sinmx CoSx CoS?2x Cosnx>

is an orthonormal list of vectors in C[—1r, 77], the vector space of
continuous real-valued functions on [ -7, 7] with inner product

(f,9) = J_nf(x)g(x)dx.

On P> (R), consider the inner product given by

1
(p,a) = Jo p(x)q(x)dx.

Apply the Gram-Schmidt procedure to the basis (1, x, x?2) to pro-
duce an orthonormal basis of P> (R).

What happens if the Gram-Schmidt procedure is applied to a list
of vectors that is not linearly independent?

Suppose V is a real inner-product space and (vi,...,Vy) is a
linearly independent list of vectors in V. Prove that there exist
exactly 2™ orthonormal lists (ey,...,ens) of vectors in V such
that

span(vi,...,V;) = span(ey,...,e;)

forall j € {1,...,m}.

Suppose (eq,...,ey) is an orthonormal list of vectors in V. Let
v € V. Prove that

VIIZ = [{(v,e1) > + -« - + [{v,em)|?

if and only if v € span(ey,...,em).

This orthonormal list is
often used for
modeling periodic
phenomena such as
tides.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Find an orthonormal basis of P»(R) (with inner product as in
Exercise 10) such that the differentiation operator (the operator
that takes p to p’) on P> (R) has an upper-triangular matrix with
respect to this basis.

Suppose U is a subspace of V. Prove that

dimU* = dimV — dimU.
Suppose U is a subspace of V. Prove that U+ = {0} if and only if
U=V.

Prove that if P € £(V) is such that P? = P and every vector
in null P is orthogonal to every vector in range P, then P is an
orthogonal projection.

Prove that if P € £(V) is such that P2 = P and
IPvI < (vl
for every v € V, then P is an orthogonal projection.

Suppose T € L(V) and U is a subspace of V. Prove that U is
invariant under T if and only if Py TPy = TPy.

Suppose T € L(V) and U is a subspace of V. Prove that U and
U+ are both invariant under T if and only if PyT = TPy.

In R4, let
U = span((1,1,0,0),(1,1,1,2)).

Find u € U such that ||lu — (1, 2, 3,4)|| is as small as possible.

Find p € P3(R) such that p(0) = 0, p’(0) = 0, and

1
J 12 +3x —p(x)|?dx
0

is as small as possible.

Find p € P5(R) that makes

T
J |sinx — p(x)|? dx

—TT
as small as possible. (The polynomial 6.40 is an excellent approx-
imation to the answer to this exercise, but here you are asked to
find the exact solution, which involves powers of 7t. A computer
that can perform symbolic integration will be useful.)
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24.

25.

26.

27.

28.

29.

30.

31.

32.

Find a polynomial g € P> (R) such that

1 1
p(;) = JO p(x)q(x) dx

for every p € P>(R).

Find a polynomial g € 7> (R) such that

1 1
J p(x)(costrx)dx =J p(x)q(x)dx
0 0

for every p € P>(R).

Fix a vector v € V and define T € L(V,F) by Tu = (u,v). For
a € F, find a formula for T*a.

Suppose n is a positive integer. Define T € L(F") by
T(Zl!"'szn) = (O,Zl,---,znfl)-
Find a formula for T*(zy,...,2zx).

Suppose T € L(V) and A € F. Prove that A is an eigenvalue of T
if and only if A is an eigenvalue of T*.

Suppose T € L(V) and U is a subspace of V. Prove that U is
invariant under T if and only if U+ is invariant under T*.

Suppose T € L(V,W). Prove that
(a) T is injective if and only if T* is surjective;
(b) T is surjective if and only if T* is injective.
Prove that
dimnull T* = dimnull T + dimW — dimV

and
dimrange T* = dimrange T

forevery T € L(V,W).
Suppose A is an m-by-n matrix of real numbers. Prove that the

dimension of the span of the columns of A (in R™) equals the
dimension of the span of the rows of A (in R").
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Txercises
1. Make P> (R) into an inner-product space by defining

1
(p,q) = JO p(x)q(x)dx.

Define T € L(P>(R)) by T(ag + a1 x + a»x?) = a1 x.

(@)  Show that T is not self-adjoint.
(b)  The matrix of T with respect to the basis (1, x, x?2) is
0 0O
01 0
0 0O
This matrix equals its conjugate transpose, even though T
is not self-adjoint. Explain why this is not a contradiction.

Prove or give a counterexample: the product of any two self-
adjoint operators on a finite-dimensional inner-product space is
self-adjoint.

() Show that if V is a real inner-product space, then the set
of self-adjoint operators on V is a subspace of L(V).

(b)  Show that if V is a complex inner-product space, then the
set of self-adjoint operators on V is not a subspace of
L(V).

Suppose P € £(V) is such that P? = P. Prove that P is an orthog-
onal projection if and only if P is self-adjoint.

Show that if dimV > 2, then the set of normal operators on V is
not a subspace of L(V).

Prove thatif T € £(V) is normal, then

range T = range T*.

Prove thatif T € £(V) is normal, then
null T¥ =null T and range T* = range T

for every positive integer k.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove that there does not exist a self-adjoint operator T € L(R3)
such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7).

Prove that a normal operator on a complex inner-product space
is self-adjoint if and only if all its eigenvalues are real.

Suppose V is a complex inner-product space and T € L(V) is a
normal operator such that 79 = T8. Prove that T is self-adjoint
and T2 =T.

Suppose V is a complex inner-product space. Prove that every
normal operator on V has a square root. (An operator S € £L(V)
is called a square root of T € £L(V) if S2 =T.)

Give an example of a real inner-product space Vand T € L(V)
and real numbers «, § with «? < 48 such that T? + «T + BI is
not invertible.

Prove or give a counterexample: every self-adjoint operator on
V has a cube root. (An operator S € L(V) is called a cube root
of Te L(V)ifS3=T.)

Suppose T € L(V) is self-adjoint, A € F, and € > 0. Prove that if
there exists v € V such that ||v|| = 1 and

| Tv — Av] < €,
then T has an eigenvalue A’ such that [A — A’| < €.

Suppose U is a finite-dimensional real vector space and T €
L(U). Prove that U has a basis consisting of eigenvectors of T if
and only if there is an inner product on U that makes T into a
self-adjoint operator.

Give an example of an operator T on an inner product space such
that T has an invariant subspace whose orthogonal complement
is not invariant under T.

Prove that the sum of any two positive operators on V is positive.

Prove thatif T € £(V) is positive, then so is T* for every positive
integer k.

Exercise 9 strengthens
the analogy (for normal
operators) between
self-adjoint operators
and real numbers.

This exercise shows
that the hypothesis
that T is self-adjoint is
needed in 7.11, even
for real vector spaces.

This exercise shows
that 7.18 can fail
without the hypothesis
that T is normal.



Name: SID:

Problem 1. (10 points) Let V' be a vector space and v € V' a fixed element. Demon-
strate (using the properties of V' as a vector space) that the element (—1)v is the additive
inverse of v.

Problem 2. (10 points) Suppose that U and W are subspaces of a vector space V.
Prove that U N'W is also a subspace of V.

Problem 3. (10 points) Let U; = {(x,0) € R*z € R} and U; = {(0,y) € R?|z € R}
be subspaces of R%. Show that R? = U; @ Us.

Problem 4. (10 points) Show that the elements 1, z, 2% x3 span Ps, where Pj is the
vector space of polynomials in z of degree at most 3.

Problem 5. (10 points) Recall that Ps is a subspace of R¥, functions from R to R.
Use this to demonstrate that 1, x, 2%, 2% are linearly independent.
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(1) A Non-standard Vector Space Structure on R2.
Show that (R?,R, @, ®) with the operations defined as follows is a vector

space.
1 o To|  |X1+ T2 — 1
Y1 Y2 y1t+y2+2

co {x] _ {cx—c—i—l]
Y cy +2c—2
Here, 4+, — denote the usual addition and subtraction of real numbers.
(2) Linear Independence.
Let {aq, a9, a3} be a linearly independent set of vectors in V.
(a) Show that {aq, a1 + as,a1 + as + a3} is also a linearly independent
set in V.
(b) Prove or disprove: {a1 — ag, as —as, as — a1} is a linearly independent
set in V.
(3) Hidden Linear Dependence.
Recall that the vector space P,, of real polynomials of degree at most m
has dimension (m + 1). Let {po,p1,- - ,pm} be a set of polynomials in P,,
such that p;(1) =0, for all s = 0,1,--- ,m.
Prove that {pg,p1,--- ,pm} is a linearly dependent set in P,,.
(4) Linear Dependence and Span.

Suppose that {vy, - ,v,} is a linearly independent set in V and w € V.
Prove that if {v; + w,--- ,v, + w} is a linearly dependent set, then w €
Span(vy, -+ ,vy).

(5) A subspace of Matz(R).
Show that the set V of all real 3 x 3 upper triangular matriceﬂ is a
subspace of Matz(R). Find a basis for V, and give its dimension.
(6) Finding a Basis.
Let P3 be the vector space of real polynomials of degree at most 3 (with
respect to usual addition of polynomials and multiplication of scalars with
polynomials). Let V' be the subspace of Ps defined as:

V ={f(z) € Ps: f(0) = f(1), £"(0) = f"(1)}.
Find a basis for V.
(7) Describing Linear Maps.
(a) Let T : V. — W be a linear map, and {1, - ,an} a basis for V.
Show that the range of T is the subspace of W spanned by the vectors
T(a1), -, T(aw).
(b) Using the previous part, describe explicitly a linear map T : R® — R?
whose range is the subspace spanned by (1,0, —1) and (1,2, 2).
(8) Linear or Not?
If
a1 = (1, 71), Qg = (2, 71), a3 = (73,2),
and

51 = (170)7 52 = (07 1)7 55 = (17 1)7

A square matrix is upper diagonal if all its entries below the principal diagonal are 0.
1



is there a linear map T : R? — R? such that T(o;) = 3;, for i = 1,2,3?
(9) Image of a Linearly Independent Set under a Linear Map.
Suppose that T : V' — W is an injective linear map, and {vq,--- ,v,} is
a linearly independent set in V. Prove that {T'(v1),---,T(vn)} is a linearly
independent set in W.
(10) An Application of Rank-Nullity Theorem.
Prove that if T : R* — R? is a linear map such that Null(7) =
{(w1, 22, 23,74) € R* : 31 = 5xy, and w3 = T4}, then T is surjective.
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MAT 310, Spring 2019 Midterm 1 Page 2

1. (10 pts)
Suppose that the vectors ug, us and uj in a vector space V are linearly independent. Show
that the vectors uj + ua, us 4+ u3 and us + up are also linearly independent.
Solution: Let ¢, ¢o,c3 € R be scalars such that
c1(ug + ua) + caua +uz) + ca(uz + u1) = 0.

Then,
(c1 + c3)us + (e1 + e2)ua + (c2 + c3)uz = 0.

As uj, us and uz are linearly dependent, it follows that
a+c=ci+ca=ca+c3=0.
Solving the above system of equations in ¢y, ¢2, ¢3, we conclude that
ci=c=c3=0.
Therefore,
c1(uy +uo) +ca(un +uz) +ca(ug +u1) =0 = ¢y =co=c3=0.

Hence, the vectors uj + us, us + uz and uz + w; arc also lincarly independent.
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2. (10 pts)
Let P5 be the vector space of real polynomials of degree at most 3 (with respect to
usual addition of polynomials and multiplication of scalars with polynomials). Let V' be the

subspace of P; defined as:
V={fePs: f(0)+f(1) =0, f(0)=f (1)}
Find a basis for V.

So'p\lﬂ 0. AV\ ayb ‘l"‘(ﬂ_)\y eV‘Nt"\} 0 d\ 6;) ; \r 07C ?-L\,Q

qum £() = ot brt (% d e
The (omc“}(‘ov\ JC (0)—}— 7/: <,> — [M?’/,‘-ej 3’1/\4_%

L&)_‘.@ﬂt b+ ( -\—A): 0

A : Y .
Since £ = bt 2Cx +3dr7 dhe Condidon

Flo)= £ (1) ey
N b= bt20+3d 2 C= =

heredoes, L | £(0)0 £ =0, F-F1)

;ﬂ?d'f'b?(—\r v d%B/ b= =g 0’*”‘0/(:’—321)

s p(o-2ha |
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P 2 4

”f@'—bﬂ by ~ 3d 4 dx3| b d CR P
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3. (10 pts)
Let Mato(R) be the vector space of all 2 x 2 real matrices (with respect to usual matrix
addition and multiplication of scalars with matrices) over the scalar field R. Further, let
V = {4 € Maty(R) : A" = A4},

i.e. V is the set of all symmetric matrices in Mat2(R). Show whether or not V' is a subspace
of Mato(R). If it is a subspace, furnish a basis for V, and give its dimension.

SO/U}"OI"“ An Qr];}*lYoO’V Q (6 W\ew 0/\ Wa?L /R)
- o b . " a L J
T O a) whese 0, b ¢ dER

Now, o {Aé”@#@(@/
=4 (23 (ff)*’! 3
{Cw o; Z) W(C d ;
Xcd)/ AL (& b> fa %&é/}Z
f +|o( >+J§f)/a/b,df//\>/
] “’W?(Oo) (24). (2)f

IR 1§ we(ess mrf)y o SubSeace

ot (o0 (70 (25 e Tk eriet

0o
74@\(1/ Wj qﬁpfwm a balif Jor V/ Gnd OJ;W(V):S.
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4. (10 pts)
If
Q1 = (1) —l)) Qg = (21 _1)1 a3 = (37 —2)’
and
= (1:0)7 B2 = (071)a B3 = (1a 1)7
is there a linear map T : R? — R? such that T(8;) = o4, for i = 1,2,37 If yes, what is the
null-space of such a linear map?

Solution: Let us first note that {81 = (1,0), 82 = (0,1)} is a basis for R*>. We define
a linear map S : R? — R? by setting S(f1) = a1 = (1,-1), S(B2) = a2 = (2,—1), and
extending it linearly to all of R? (we know that the linear map S is uniquely determined by
its action on the basis {81, 82})-

Now, S(83) = S(1,1) = S(1,0) + S(0,1) = S(B1) + S(B2) = a1 + 02 = (3, —2) = as.

Therefore, S(8;) = a;, for j =1,2,3.

Hence, a linear map 7" with the desired properties exists, and it is given by T := S as
above.

We now note that the image of T is equal to span(ai, as) = R2. Thus, the dimension of
image(T) is 2. By the rank-nullity theorem, we have that

dim(null(7)) = dim(R?) — dim(image(7)) =2 —2 = 0.
Thus, dim(null(7))=0; i.e. null(T) = {(0,0)}.
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5. (10 pts)
Let Wy, Wa and W3 be subspaces of a vector space V such that Wi is contained in

W, U W;. Show that W is either contained in W,, or contained in W3.

Solution: Wi, W, and W3 are subspaces of a vector space V such that Wi is contained
in Wa U Wj3.

Let us suppose that W is neither contained in W2, nor contained in W3 (which is the
negation of what we are required to prove). Then, we can pick o € W1\ W, and 8 € W1\ Ws.
Since Wi C Wa U W3, we must have that o € W3 and 8 € Ws.

Moreover, since o, 8 € Wi, and W is a subspace, we conclude that a + 3 € Wi. As
W1 C Wa U Wa, we must have (o + 8) € Wa or (a + ) € Wa.

Case 1. Let (a4 3) € Wa2. We also know that 8 € Wa. As W is a subspace, we have
that & = (a + B) — 8 € Wa. But this contradicts our selection of a from Wy \ Wa.

Case 2. Let (a4 3) € W3. We also know that & € W3. As W3 is a subspace, we have
that 8 = (o + B) — a € W3. But this contradicts our selection of § from W1 \ Wa.

Since we arrived at a contradiction in both cases, our assumption that 11 is neither
contained in Wa, nor contained in W3 was wrong. This proves that W1 is either contained

in W», or contained in Wj.
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6. (10 pts)
Prove that there does not exist a linear map T : R® — R? whose null space equals
{(x1,22, 23, T4, 25) € RS : 21 = 372, and 23 =74 = T5}. ’

Solution: Let us set V = {(z1,z2,%3,24,%5) € RS : 2; = 3z2, and T3 = T4 = Ts}.
Clearly, we can rewrite
V = {(322, 22, T3, 23, 23) : T2, T3 € R}
= {2:2 . (3,1,0,0,0)-{-333 . (0,0,1,1,1) 1 Lo, X3 € R}
= Span{(3,1,0,0,0),(0,0,1,1,1)}.
Thus, {(3,1,0,0,0),(0,0,1,1,1)} is a basis for V, and hence dim(V) = 2.
Now suppose that T : R — R? is a linear map with null(T) = V. Then, dim(null(T)) =
dim(V) = 2.
By the rank-nullity theorem, we have that
dim(R®) = dim(image(T)) + dim(null(T"))
— 5 = dim(image(T")) + 2
— dim(image(T)) = 3.
However, image(T) C R?, and hence, dim(image(T)) < dim(R?) = 2.
But this implies that 3 = dim(image(T)) < 2; i.e. 3 < 2, a contradiction. This contra-
diction proves that there cannot exist a linear map 7' : R5 — R? whose null space equals

V.



(1)

(2)

3)
(4)

(10)

(11)

(12)

Suppose that V and W are both finite dimensional vector spaces. Prove
that there exists a surjective linear map from V onto W if and only if
Dim(W) < Dim(V).
Suppose that W is finite dimensional and T' € L(V,W). Prove that T is
injective if and only if there exists S € L(W, V') such that ST is the identity
map on V.
Define T' € L(R?) by T(w, z) = (z,w). Find all eigenvalues and eigenspaces
of T. Is T diagonalizable?
Define T' € L(R?) by T'(21, 22,23) = (222,0,523). Find all eigenvalues and
eigenspaces of T'. Is T' diagonalizable?
Suppose T € L(V) and Rank(T) = k. Prove that T has at most k + 1
distinct eigenvalues.
Suppose P € £(V) and P? = I. Find all eigenvalues of P. Prove that P
is diagonalizable. (Hint: for every v € V, we have that v = (v + P(v))/2 +
(v P(0)),2
Prove or disprove: there is an inner product on R? such that the associated
norm is given by

(21, 2)[] = Max(|a1], |z2]),
for all (z1,72) € R%
Suppose {e1, - ,en} is an orthonormal list of vectors in V, and v €
V. Prove that |[v]]? = |(v,e1)]? + -+ + [{(v,e,)|? if and only if v €
Span(ey, -+, en).
On P5(R), consider the inner product given by

1
(f.9) = / f(2)g(x)dz, for all f,g € Py(R).

Apply the Gram-Schmidt procedure to the basis {1,z, 2%} to produce an
orthonormal basis of Py (R).
On P5(R), consider the inner product given by

1
(o) = [ Fadgte)ds, for all £ € Pa(R),
(a) Prove that T : Po(R) — R defined as

T(p) =p(2)
is a linear functional.
(b) Find a polynomial ¢ € P2(R) such that

1
p2) = [ paaa)ds
0
for every p € Pa(R).
In R* (equipped with the standard dot product of vectors), let
U= Span((L 0,0, 1)7 (17 2,1, 2))
Find w € U such that ||u — (2,1,2,1)|| is as small as possible.
Suppose T' € L(V) and A € C. Prove that A is an eigenvalue of 7' if and
only if A is an eigenvalue of T™.
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1. (10 pts)
Suppose that V is finite dimensional and T' € £(V,W). Prove that T is surjective if and
only if there exists S € L(W, V') such that T'S is the identity map on W.

(<:> /Affwmz, Hoe exyts S WV such that
TS - I’\/J Fdr an \/éCfJ’Df W E W/ e ‘9’,/}

T(§W)$W /rL‘“J Mmeons W o5 The vaAnge O’VﬂT

A fwjfch‘\m

(=2) Arume T, Vo W is fijcﬁVC-.

Fix ong  bosis ;L\,—"/(:m'} ok W Shee T ¥
swjehve,  Yhere exist vedrs €1 - €&V with
Te=t Tesb -, Te,=fa

Now Sirply defne o lmeor Map SUWo VY by
Slo bt~ +0ub)= 0 et 40,00

We  con see

L e SRR

= o)+ ~1 0, T(e
| =ttt v, £
LTS s e tleshby raap on W,
We have explicitly  Conmtricted o |mes. map S

with the desired prperty, So there exists  Sch o
/‘\aF S\' '
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2. (5+5+5 pts)
Suppose P € £L(V,V), and P? = P.

i) Prove that the only eigenvalues of P are 0 and 1.

Let A be cn eigenvolue ot F
Thot 15, thece exisr o nonzen Jectnr V &V
(eijewca#ur) sk Pu=Av. O
We ot 5 compute PU in two  differet vuays
On the one hod,  PuzpPu  ( PSP)
= jv (D)
On the ofher kel DP'yz PlAy)  (MO@)

FAPN) = AAv (D)

= Ay
l/(znce, e L‘&VL )\’1}:}11), = (/\1'/\) V=)
S\[nbe V4 0‘ we Mmust have /\’L—/\""() = s /\ ;OOV'
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ii) (Contd.) Prove that the Eigenspace of 0 is equal to Ker(T'), and the Eigenspace of 1

is equal to Range(T'). é L\m/z T’—‘—p)
TL” &@& sporee op s L\‘j o(@"(i\/\fﬁ’m

er (T-0.L)= ke, T.
Let vs e tle epoenspace of | i m\njeCT)
That U, we wont 4o proJe k@r(’T—IF ronyé ﬁ)
(2) Cwse any  elemet TV € vange ()
We have (T-I) (V)= T To 20 Sinee T°=T
S Tve ke (T-T) . ke (T-1) = ronge (T)
(&) Conersely, ler Veker (T-T) re (T-Ijv=g

gt

e hawe T’V’:—'U‘ ‘;th Then V="\v & r-mje(—-r)

ke (T-2) € ronge( 7)

Tl prives /@Y(’ffﬂfrr@e(()
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iii) (Contd.) Prove that P is diagonalizable.
(Hint: Use the fact that a linear map T': V — V is diagonalizable if and only if the sum
of the dimensions of its eigenspaces equals Dim(V).)

R@CA[" 7"%(, PW"CVJ:)

T, ai?ajmp\h-}pl,l,e, (;:) OLV“ V = Sum 0'70 Oli‘m (/(er('?'» i J)
Lr ol Ay 1 2190nvalues

Qj ((\)/ We  have Uf\b Two Cij@ﬁVG\uzj op Té:P)
T[«L EIjaVO’VU' Arre /\1" 0 ~ A= |

Hence /(,”ozia\jomh;.dolc & im V = om (/C‘%T)’f Aim (/Q"/(T'I))
Fram (), we hove Kooy (T-Thoranye(T),

Blﬂ# ’H‘\M ~e CON e the V‘Mk’/\v”i@ *Lam,\.\

o V= sim (kerT) + o Cronge T) L e nlin)
= dim (ke ™) i {keew ( T-2))

Y 0(?&90/\0\‘7%9\1.'2

(T=F)
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3. (10 pts)
Let 7 : R3 — R3 be a linear map defined as

T(z,y, 2) = (0,2,¥).
Is T diagonalizable? Justify your answer.

Sol | Fix o shondsod Lesy  €=(L0D)
€.~ (0,1.0)
€ =(00,)

The retrix Porm of T, with repat to e st beis i

[T:)i(? 22) /Ilw Fa o\(roo(_p !om"i'r'fwgmlay

2 | o
bt ot pltojon', This 1s -eKlo\iBL Cmaluole Tis not

0[‘5}0 relizoble.
Sol 2 We compute the El1geaspoces of s
Need 4 solve 7(74{),3)":/\(1,)/_?) > Guwwhﬁ’, ZJVA/MC(,

—

TLHJ 1. O :A% ‘\: @ _/Lf /\’/0/ +L'C‘h l/"cfﬁéf' ’Z‘:y—;o
x= Ay | '

e
Y= A2 I\ U Span ;(20,1)%

\
) ( eguivoletly  only one eigenvectre (o, D)
@) Tf .)\*’D/ g PR D=hz we have 2=

WOV\ ’1¢A_\j/ e \/\NC y;o ] ond JN\'\\(A/\!j !'VM %A'Z/

W = "
e oved L D ‘) (Lb,?): (O/ 0/0) is The o't‘lh \/f,O'h’( N ,RJ
f*)ffjw T(l/j,i): /\(2,‘ ) %) ) ;.F A A V) Buet +>I"l\'f Coannot 4'6

on 669“VW, § Mee CBC/\VC(/"WI l’\a\/(/ @V Le MNonEery
- Al'\_‘j A%0)  cannet be an epenvslue of T,
(/(Zf‘ge, the Or\b {iyeﬁ;{,&,w s The eljen)?acc 0400/ vy Py

This meen  the el yenspace of D




Spon [(O,D,l)’{,
Hence T does not fm;@ fhe Cypiterin .

! 0(?»», \/= Surm o dim (.l(ev (T’Ayl» IDV V/{'J«.‘@@'ff\\/aluu"

//L\}/ mMeons T s ot olhtjonahe«lplc
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4. (10 pts)
In R4, let

Page 7

U = Span((1,1,0,0),(1,1,1,2)).

Find u € U such that ||u— (1,2,3,4)|| is as small as possible. (Here R* is viewed as an inner
product space equipped with the standard dot product of vectors.)

(1,23,¢) g,,cl, vel s Prec'ue(

The Pr?}eu“TM \Veutor O,[ C/,Z},Q)
on the space U

0 To compure  pro), (1,234), neeel +

(/O/V\PH'@ ot l(eest one Foffiuc orthsnsrmal Eaf‘,;,

/{’\'(J CAA LC WY?L\’H.’,J mffj[\:\) C_l S FV‘DCC '/’b +£‘(/
9\\I€M Lnon w%onoma’) ésu O‘C (/{

Hsool=r = e=L (1,5,

= C(,l,],’)—) - <('/',),‘L)/@,> ' cl

:C(/l/f,l) —_ <(!/\/|/1/ f(l ) D)> _L(,,D o)
= (L2~ o
-5

,o,0)= (0,01 )

2 ﬁu-/{t)oru
fe"'r(//OO) e
yaﬁj o‘ﬁ U

Moo prjullsn= Casee) e+ {0230 e e,
’%J’(I/I/DO)'f"S_L ~o0,,1) = (=2 U “)l

e

=L (0,01 s (sne posibie) ortinwes
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5. (5+10 pts)
Consider the map T : Py(R) — R defined as

T(p) = p(1).
(Here Py(R) stands for the vector space of all real polynomials of degree at most two.)

i) Show that T is a linear functional.

Need # shao | respects oddittom & scol-r Multip o,

o v.2¢ P(R). ve heve
T leH) = +9) (= pC+ 2(1)
= Tlp) 4 y)
£ 5 respects  adolirivn
ov pe Plr) ond e R_ e howe

Tlap)=lp) ()= & p0) =0T(p)

T ,erpcu‘f Scalo, /""’“"f./\"fa*"av\

~

- 7 (5 o [M@w V\AQF ((Mem- Am%ma‘)
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ii) P2(R) turns into an inner product space if we define an inner product by

1
() = [ S(@ha(e)dz, for all 1,9 € Pa(R),
Find a polynomial ¢ € P»(R) such that

1
p(1) = [ plaa(a)ds
for every p € Pa(R).

Ejyi Find an orthopowrmel besis of B(R)
/(L)ere 15 an obviowe Choice op basis f),'l,qu\ o'[ ,P-L((Q)_

We o«ﬁb (3-8 proces 40 H'm. ch./ +» f)roalwe on  Orfhanora)
bans of R(R),

LT ///\a(x—m' - e~ | (eB))

. i (n,e) e [{@(H'—/j" (1—",;)20(77(
11'00’1097()('»1—{, :fj\,_?—'—

2 Cam = T a-l)= 55 bz-1)

/
e, = - (xeye,- (e ey

= - (‘(rﬁo’?o&)w -< \75_1'2 (22-1) o(x)f{(zwl)
= 2 g4l = R
e =k T s - 5L S, et TN

Ue's” - /;(11’7&1“%)0(1 s J\/g; -

C e

\\

= Jimo (2-r+g) = 5 (1= bnrt)
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. Let P5(R) be the vector space of real polynomials of degree at most 4, and
U= {p(z) = az® + bz° : a,b € R}.
Find a subspace W of P5(R) such that P5(R) = U & W.

. Let V be finite-dimensional, T € £L(V'), and M = [T];z be the matrix of 7" with respect to
some basis B of V. Assume that the matrix M is lower-triangular. Prove that T is surjective
if and only if every entry on the principal diagonal of M is different from 0.

. Let P3(R) be the vector space of real polynomials of degree at most 3, and the linear map
T : P3(R) — P3(R) be defined as T'(p) = p".

(a) Find the eigenvalues and eigenspaces of T'. Is T' diagonalizable?

(b) Find the generalized eigenspace for each eigenvalue of T.

. Suppose that V is finite dimensional and S, T € £(V'). Prove that ST = Idy if and only if
T is bijective and S is the inverse of T'.

. Let V' be an n-dimensional inner product space, and 7" € L(V'). Further suppose that U is
a subspace of V, {B1,---, Bk} is a basis for U, {Brs1,---,Bn} is a basis for U*, and Py is
the orthogonal projection operator to U.

(a) Show that B:= {51, -, Bk, Bk+1, - ,Pn} is a basis for V.

(b) Prove that PyT = TPy if and only if the matrix [T is of the form

M, 0
0 M|’
where M is a k x k matrix and M is an (n — k) x (n — k) matrix.

. Let P4(R) be the inner product space of real polynomials of degree at most 4 equipped with
the inner product
1
(p.q) = / p(z)q(z)dz,
-1
for all p, ¢ € P4(R), and consider its subspace U = Span{z,x3}. Find U~.

. Let T be a diagonalizable operator on an n-dimensional complex vector space V.

(a) Show that Null (72) = Null (7).
(b) Assume further that 7"*! is the zero operator on V; i.e. T" (o) = 0y for all « € V.
Show that T itself is the zero operator on V.

. Suppose V is an n-dimensional complex vector space. Suppose T' € L(V) is such that 1,2,
and 3 are the only distinct eigenvalues of T'.

(a) Prove that the dimension of each generalized eigenspace of T' is at most (n — 2).

(b) Show that (T — I)"~2(T — 2I)"~2(T — 31)"2(a) = Oy, forall a € V.
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