<u>Ben Ward</u> >

Math 307 - Fall 2015 - Course Information

Week of:	Monday	Wednesday	Homework (Due the following Wednesday unless stated otherwise).	
8/24	1.1,1.2	1.3,1.4	p.7; 2,10,12 // p.16; 2,3,6,8,32 // p.23; 2,6,8,18,22 // p.31; 2,4,6,8,14,16,18	
8/31	2.1,2.2	2.3-2.4	p.69; 4,6,8,11,15 // p.73; 2,4,6 // p.80; 7,8,9,14,15,16 // p.87; 8,9,16	
9/7	Labor Day	2.5,1.6	p.98; 1,8,13,14,22 // p.42 3,4,8,21,22	
9/14	1.6,4.1	4.1,4.2	p.182; 1,2,11,14,32 // p.187; 2,3,9,14 // p.192; 4,16 // p.198; 8	
9/21	4.3	4.4	p.210; 1,2,4,11,22 // p215; 24 Due Monday October 5, in class.	
9/28	ReviewProblems (click here)	Midterm 1	none	
10/5	5.1	5.2-5.3	p.224; 4,6,8,20,21,35,36 // p.232; 1,2,4,14,18,19,20 (Due 10/14)	
10/12	5.4	6.1	p.236; 1,2,4,15 // p.243 1,2,18 // p.258; 7,8,17,23,24,33 (Due 10/21)	
10/19	6.2,6.3	6.4	p.270; 1,2,6 // p.281; 3,6,16 // p.292; 9,10,11 // p.298; 3,4,5,6 (Due 10/28)	
10/26	6.4,7.1	7.2,7.3	p.321; 3,4,12 // p.332; 13,14,15 // p.337; 2,6,9,10	
11/2	6.5,7.4	7.6,8.1	p.309; 11 // p.346; 12,13,21,22,24 // p.358; 3,4,8	
11/9	8.2,8.3	8.4	p.376; 1,2,4,5 // p.382; 11,12 // p.385; 4,8 // p.394; 1,2,3,4 (Due 11/23, but is covered on exam 2).	
11/16	<u>Click For</u> <u>Review</u> Problems	Midterm 2		
11/23	9.1,9.3	Thanksgiving		
11/30	Mathematica in Harriman 320	Last Class	p.408; 1,2 // p. 418; 3,4 //p. 429; 8a,9 // p.437; 6,9,10 // p.447 5,6.	
			This HW is optional but the material will be on the final. If you hand it in 1 will replace your lowest HW score with your score on this assignment. If so, due at the final exam.	
12/7			Final Exam: Tuesday Dec 8, 8:30-11 PM	

Instructor: Dr. Ben Ward Email: benjamin.ward at stonybrook... Office: Simons Center 403 Office Hours: M 1:30-3:00; W: 11:00-12:30 or by appt. Lecture: MW 4:00-5:20 in Library E4310 Recitation: M 5:30-6:23 in Library E4310 Recitation Instructor: Jean-Francois Arbour Textbook: Multivariable Mathematics by Williamson and Trotter 4th ed. We will cover chapters 1-9, except chapter 3. Final Exam: Tuesday Dec 8, 8:30-11 PM More course information is available on the <u>syllabus.</u>

从 Recitation1.pdf (44k)

v.1

₽

Ŧ

v.1

L	recitation11.pdf (45k)	Benjamin Ward, Nov 30, 2015, 12:12 PM	v.1	₽
r	recitation3.pdf (43k)	Benjamin Ward, Sep 28, 2015, 8:04 AM	v.1	ŧ
r	recitation4.pdf (55k)	Benjamin Ward, Sep 28, 2015, 8:04 AM	v.1	ŧ
L	recitation5.pdf (65k)	Benjamin Ward, Nov 30, 2015, 12:11 PM	v.1	ŧ
٨	recitation8.pdf (45k)	Benjamin Ward, Nov 30, 2015, 12:12 PM	v.1	ŧ
٨	recitation9.pdf (64k)	Benjamin Ward, Nov 30, 2015, 12:12 PM	v.1	ŧ

Comments

You do not have permission to add comments.

Sign in | Recent Site Activity | Report Abuse | Print Page | Powered By Google Sites

- **1.** Let $\vec{v} = (3, 1, 1), \vec{x} = (1, 2, -3), \vec{w} = (2, -1, 4)$ be vectors in \mathbb{R}^3 .
 - (a) Calculate the following:
 - i. $e_1 \bullet \vec{v}$
 - ii. $\vec{v} \bullet \vec{x}$
 - iii. $(\vec{v} \times \vec{x}) \times \vec{w}$
 - iv. $\vec{v} \times (\vec{x} \times \vec{w})$
 - v. All angles between the three vectors.
 - (b) Are these 3 vectors linearly independent?
 - (c) Find a parametrization for the k-plane of solutions to $A\vec{x} = 0$, where A is the matrix whose rows are \vec{v} , \vec{x} and \vec{w} .
- 2. What would you say if I asked the question 'is the dot product associative?'?
- **3.** Let \vec{v} and \vec{w} be vectors on a plane Γ in \mathbb{R}^3 . Let \vec{x} be a vector orthogonal to Γ . Prove that $\vec{v} \bullet \vec{x} = \vec{w} \bullet \vec{x}$.
- **4.** Let *A* be the following matrix:

$$\left[\begin{array}{rrr} 0 & -1 \\ 1 & 0 \end{array}\right]$$

- (a) Find A^{-1} .
- (b) Calculate A^4 .
- (c) Can you give a geometric interpretation of your results above. Hint: Think of A as a function $\mathbb{R}^2 \to \mathbb{R}^2$.
- 5. Suppose forces acting on a particle move it in \mathbb{R}^3 along a trajectory parametrized by

$$f(t) = (\sqrt{t}, t^2, t)$$

for 0 < t < 4. Suddenly at time t = 4 these forces cease, and the particle continues from this time maintaining a constant direction and velocity.

- (a) What is the position of the particle at t = 3?
- (b) What is the position of the particle at t = 5?
- 6. Let (a, b, c) be a point on the unit sphere in \mathbb{R}^3 . Recall the spherical coordinate parametrization is:

$$f(u,v) = \begin{pmatrix} \cos(u)\sin(v)\\ \sin(u)\sin(v)\\ \cos(v) \end{pmatrix}$$

- (a) Use f to find a parametrization of the plane tangent to the sphere at (a, b, c). Hint: since (a, b, c) is a point on the sphere, there exists (r, t) such that f(r, t) = (a, b, c).
- (b) Show that if \vec{v} is any vector on the tangent plane you found above, then $\vec{v} \bullet (a, b, c) = 1$.
- (c) Give a geometric interpretation of this fact. (Draw a picture).
- (d) Prove that the sphere has no singular points.

Name: _

- 1. True or False
 - (a) Every continuous function is differentiable.
 - (b) Every differentiable function is continuous.
 - (c) Every integrable function is continuous.
 - (d) Every continuous function is integrable.
 - (e) If $f: \mathbb{R}^n \to \mathbb{R}^m$ is a differentiable function then for each vector \vec{x} , $f'(\vec{x})$ is an $n \ge m$ matrix.
 - (f) If there exists a closed curve γ such that $\int_{\gamma} \vec{F} d\vec{x} = 0$, for some vector field \vec{F} then \vec{F} is the gradient of a function.
 - (g) If f is a smooth function, then $Curl(\nabla f) = 0$.
 - (h) If f is a smooth function, then $Div(\nabla f) = 0$.
- **2.** Let $f(x, y) = x^2 + y 4xy$.
 - (a) Find the direction of greatest increase of f at the point (1, 1).
 - (b) Find the direction of greatest decrease of f at the point (1, 1).
 - (c) Find the direction(s) of smallest change in f at the point (1, 1).
- **3.** Let $f(x, y) = (2y\cos(x), 3x^2)$
 - (a) Find f'. Your answer will be a 2x2 matrix.
 - (b) Suppose f does not have a continuously differentiable inverse in a neighborhood of some point (a, b) in the interior of the rectangle $0 \le x \le 4, 0 \le y \le 4$. Find a.
- 4. Find and classify the critical points of f(x, y) = sin(x) + sin(y) + sin(x+y) in the interior of the square region $0 \le x \le 4, 0 \le y \le 4$.
- 5. Find the maximum and minimum values of the function $f(x, y) = 3x^3 xy^2 + 6y$ in the square region $0 \le x \le 4, 0 \le y \le 4$.
- 6. Which point(s) on the surface $xy + 3x + z^2 = 9$ are closest to the origin?
- 7. Compute $\int_B xyz \, dV$ where B is the solid cylinder of height 2 and radius 1 whose bottom circle is in the xy-plane centered at the origin.
- 8. Show that the vector field $\vec{F}(x, y) = (x + y, 1)$ is not the gradient of a function by finding two curves with the same end points but different line integrals.

I also recommend using the homework for chapter 8 to review that material.

1. Write the vector (-1, 3, 2) as a linear combination of the vectors (1, 1, 0), (1, 0, 1) and (1, 0, -1). Draw a picture if you feel so bold.

2. Find three vectors such that the previous question would have no answer if they were substituted in.

3. Give a geometric description of vector subtraction.

4. Prove that $|r||\vec{v}| = |r\vec{v}|$.

5. Draw a picture in \mathbb{R}^2 that 'proves' vector addition is associative.

1. Calculate the dot product of (2, 3, 4, 5) and (-1, 2, 3, -3). Are these vectors orthogonal?

2. Using the dot product, find some vectors which are at a 45 degree angle to (0, 0, 1) in \mathbb{R}^3 and whose height (z coordinate) is 1. What shape does the set of all such vectors form?

3. Prove that two distinct parallel lines do not intersect.

4. Find a parametrization for the plane P with the following two properties: all vectors on P are perpendicular to the vector (1, 2, 1) and the plane P contains the vector (-1, 3, 2).

1. Find a vector which is orthogonal to the plane containing (1, 1, 2) and (0, 0, 1).

2. Find a pair of orthogonal vectors in the plane containing (1, 1, 2) and (0, 0, 1).

3. Does the inverse of the following matrix exist? How do you know?

$\begin{bmatrix} 2 \end{bmatrix}$	0	1]
3	-1	0
4	0	1

4. Use the inverse matrix of A to solve the system $A\vec{x} = \vec{b}$ where A is as above and $\vec{b} = (1, 2, -2)$

5. Find the determinant of the following matrix:

$$\left[\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right]$$

1. Make a presentable sketch of the parametrized curve $f \colon \mathbb{R} \to \mathbb{R}^3$ given by

$$f(t) = (t, tsin(\pi t), tcos(\pi t))$$

2. Find the derivative of the above function.

3. Find the length of the curve $y = x^2$ on the interval [0, 1].

4. Use level sets to graph the functions $z = 4x^2 - y^2$ and z = 3x - 2y.

5. Show that for the above functions (setting z = g(x, y)) that $g_{xy} = g_{yx}$.

Consider the function $f \colon \mathbb{R}^3 \to \mathbb{R}^3$:

$$f(r,\phi,\theta) = \left(\begin{array}{c} r\cos(\theta)\sin(\phi)\\ r\sin(\theta)\sin(\phi)\\ r\cos(\phi) \end{array}\right)$$

which we'll restrict to the domain: $0 \le r \le R \ 0 < \phi < \pi$ and $0 \le \theta < 2\pi$.

- 1. Describe the level sets of f.
- 2. What size will the Jacobian matrix $f'(\vec{x})$ be?
- 3. Find the Jacobian matrix.

4. Find the determinant of the Jacobian matrix. Simplify using trig. identities.

- 5. How do you know f is differentiable?
- 6. Integrate the determinant with respect to r, then ϕ , then θ , over the specified domain.
- 7. What does this number represent?

This problem asks you to find the absolute maximum and minimum of the intersection of the plane x + y + z = 1 and the sphere $x^2 + y^2 + z^2 = 1$.

1. First describe the plane by a function f(x, y) = z of two variables and substitute this expression to describe the itersection as a level set g(x, y) = 0.

2. Use the method of Lagrange multipliers to find the critical points of the function. In other words find the critical points of $\mathcal{L} = f - \lambda g$.

3. Verify that the points you found live on both the plane and the sphere. Evaluate to find the maximum and minimum z values.

4. Draw a picture of the intersection of these two objects with the extrema labeled.

5. Is the intersection a circle? If so determine its radius.

1. Find the volume under the plane x + 2y + 3z = 3 and over the first quadrant of the xy-plane.

2. Let $g(x, y) = x^2 + sin(x) + yx$. Compute

$$\frac{d}{dy}\int_0^\pi g(x,y)dx$$

in two ways: directly and using the Leibniz rule.

3. Let B be the subset of \mathbb{R}^2 consisting of those vectors whose length is less than 10. Define a function $f: B \to \mathbb{R}$ by

 $f(x,y) = \begin{cases} 2 & \text{if } x \text{ is an integer} \\ 3 & \text{if } x \text{ is not an integer} \end{cases}$

Is f integrable? If not, why not? If so, compute $\int_B f dA$.

1. Calculate the scalar curl of \vec{F} .

2. Suppose \vec{F} is path independent. Find r.

- 3. Fix r to the value you found above. Let γ be the curve consisting of the portion of the y-axis with $|y| \leq 1$ attached to the right half of the unit circle. Test Green's theorem by calculating the line integral of \vec{F} around the curve γ in two ways:
 - (a) Using a parametrization of γ .
 - (b) Using an iterated integral in polar coordinates.

Which way was easier?