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MAT 125, MAT 131, MAT 141, or AMS 151;

or an average of B- or better in
MAT 125/126/127, MAT 131/132, MAT 141/142, or AMS 151/152;

or a grade of C or higher in both
MAT 203, MAT 205 or AMS 261; and

MAT 211 or AMS 210;
or permission of the instructor.
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Approximate Schedule for MAT200, Spring 2007

Week Topics Homework

1/22

1 The Language of Mathematics?nbsp;
2 Implications?nbsp;
3 Proofs
4 Proof by Contradiction

Homework 1
Answer

1/29?
nbsp;

5 Proof by Induction
6 The Language of Set Theory

HW 2 (due 2/7 or 2/8): Prove that if n is an integer, 2n+1 is odd.
On pages 53-54: problems 4 through 11. Answers
Text problems 2.1(p.19), 2.2(p.20), 3.2 and 3.3(p.29), 4.2 and 4.3(p.37) should be done, but won't be graded (since the
 answers are in the back).?nbsp;

?nbsp;2/5 7 Quantifiers
8 Functions

HW 3 (due 2/14 or 2/15)?nbsp; Ungraded problems (answers in back): 5.1 through 5.7 (p. 51-2)
On pages 55-57: problems 15,19,23,24
You should also hand in this problem.
Answers, Answers to extra problems

?
nbsp;2/12 9 Injections, Surjections, and Bijections.

HW 4 (due 2/21 or 2/22)?nbsp; Ungraded problems (answers in back): 6.4 through 6.7 (p. 72-3), 7.1, 7.5 through 7.8 (p. 86-
7).
On pages 115-117: problems 6,7,9,10,13, another problem.?nbsp; Answers

2/19?
nbsp;

10 Counting.?nbsp; ?nbsp;HW 5 (due 3/7 or 3/8): Ungraded problems (answers in back): 10.2, 10.3 (p.132), 11.2, 11.4 (p. 143)
On pages 117-119: problems 14, 17, 21, answers, graphs

2/26
11 Properties of Finite Sets.

HW 6 (due 3/14 or 3/15): pages 182-4: 2,8,9,12,15, answers: page 1, page 2, the rest.

3/5?nbsp; 11 Properties of Finite Sets (continued)
12 Counting Functions and Subsets.

?nbsp;Exam I Answers (Lecture 2) (Monday/ Wednesday)
Both lectures: Redo this exam for extra credit.

3/12?
nbsp;

12 Counting Functions and Subsets (continued)
13 Number Systems.

HW 7 (due 3/21 or 3/22): Ungraded problems (answers in back): 12.1 through 12.5.?nbsp;
pages 182-185: 4, 20, hints, answers

3/19
13 Number Systems (continued)
14 Counting Infinite Sets?nbsp;
Last day to drop (with "W"): March 23

HW 8 (due 3/28 or 3/29): ?nbsp; Ungraded problems (answers in back): 13.4, 14.1, 14.2, and 14.3.
On page 186: problems 23, 24, 25, 26. ?nbsp;Answers

http://www.math.sunysb.edu/%7Esbsimon/200/hw1ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw2ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw3ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw3ansb.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw4ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw5ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/graphs.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw6ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/exam1l2ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw7hints.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw7ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/hw8ans.pdf


3/26
Counting infinite sets (continued)
Geometry Notes: 1. Introduction through 3. Ruler
 Axiom.

HW 9 (due 4/11 or 4/19): Geometry notes: Exercises 2.3, 2.6, 3.1, 3.2, and 3.3. ?nbsp;Answers

4/2 Spring Break

?nbsp;4/9 Geometry notes:?nbsp;4.?nbsp; Protractor Axiom HW 10:(due 4/18 or 4/26): Geometry notes: Exercises 4.3, 4.4, 4.7, and 4.8. Here are the solutions.

?
nbsp;4/16

Geometry notes:?nbsp; 5. Triangles HW 11: (Ungraded) Geometry notes: Exercises 5.2, 5.5, 5.6, Book: p. 269: 22.1,22.2,22.3, p.273: 17, Answers, answer to
 last question

?
nbsp;4/23

Exam Lecture 1 exam, lecture 2 exam, Lecture 1 answers, lecture 2 answers, lecture 2 bijection question                           

4/30
19 Modular Arithmetic.?nbsp;
21 Congruence Classes (continued).?nbsp;
22 Partitions and Equivalence Relations.

Lecture 1 (Tue/Thur class) Thur. May 10,?nbsp;11:00am-1:30pm  in
 our usual classroom and
Lecture 2 (Mon/Wed class) May 14, 5:00pm-7:30pm in our usual
 classroom

Practice Exam, Final exam

Return to class main page
Page last modified on Sunday, 21 January 2007.

http://www.math.sunysb.edu/%7Esbsimon/200/hw9ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/HW9sols.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/HW10sols.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/HW11sols.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/HW10sols.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/exam2l1ans.pdf
http://www.math.sunysb.edu/%7Esbsimon/200/exam2l2ans.pdf
http://www.math.stonybrook.edu/~sbsimon/200/exam2l2bij.pdf
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Last day to drop course (with a "W"): March 23

Exam 1 Cutoffs
Lecture 1:
 40 A
 30 B
 15 C
 10 D

 Lecture 2:
 39 A
 29 B
 14 C
 9   D
 Note: if you are within 2 points of the cutoff, add a + or - to your grade.  Thus,
  in lecture 1, for example, 15-16 is C-, while 28-29 is C+.  

 Letter grades are advisory.  This means that the actual number rather than the letter will be recorded to
 calculate your grade totals, so a high B is better than a low B, etc.
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What When
% of Final

 Grade

Exam 1 February or
 March

TBA 25%

Exam 2 April TBA 25%

Final
 Exam

TBA TBA 30%

Homeworks, Participation, etc. 20%
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This page has problems you can use to practice, as well as solutions to an old midterm 1 and an old midterm
 2 and solutions to midterm 2. 

 Other Handouts:

 Notes on Geometry (from faculty at Stony Brook)
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Sixty Logic Problems from Lewis Caroll's Symbolic Logic.

 You might enjoy reading Welcome to the Hotel Infinity (also in
 PDF) related to our discussion of cardinality (and inspired by

 Hilbert's "Grand Hotel" idea).

 You might find it interesting to look at a java-enhanced version of
 Euclid's Elements.

http://home.earthlink.net/%7Elfdean/carroll/puzzles/logic.html
http://home.earthlink.net/%7Elfdean/carroll/puzzles/logic.html
http://www.c3.lanl.gov/mega-math/workbk/infinity/inhotel.html
http://www.c3.lanl.gov/mega-math/workbk/infinity/inhotel.html


Homework 1

Use one or more truth tables to show that
((P ⇒ Q) and (Q⇒ R))⇒ (P ⇒ R).

1



Homework 3

Assume that a1, a2, . . . , an are real numbers which are all the same sign (all
positive or all negative), and assume that all of them are strictly greater than
−1.

1. Show that
n∏

i=1

(1 + ai) ≥ 1 +
n∑

i=1

ai.

Hint: induct on n.

2. Use the result of the previous problem to show that if x > −1,

(1 + x)n ≥ 1 + nx

Hint: take a1 = a2 = . . . = an = x.

1



True or false (prove your answer)
∀x ∈ R,∃y ∈ Z,∀z ∈ Z, (z < x ⇒ z ≤ y) and (z > x ⇒ z > y)

1







Math 200 Lecture 1 (Tue/ Thur) Exam I Spring 2007 Scott Simon

1. (4 pts) Rewrite “It is not the case that the car is both red and has leather upholstry” as
an equivalent sentence that uses ‘or’, but not ‘and’.

2. (4 pts) Rewrite without negatives (without using “not”):

not (∀x ∈ R,∀y ∈ R,∃z ∈ R, x < y ⇒ x < z < y).

3. (6 pts) Prove that

[(A ∪B)− (A ∩B)] ∩ C = [(A ∩ C) ∪ (B ∩ C)]− (A ∩B ∩ C)

4. (8 pts) Prove that
n∑

j=1

j3 =

(
n∑

j=1

j

)2

.

You may assume that
n∑

j=1

j =
n(n + 1)

2
.

5. True or False (Prove your answer or give a counterexample)

(a) (3 pts) ∀x ∈ R,∃y ∈ R, 0 < x + y < 1.

(b) (3 pts) ∀x ∈ R,∃y ∈ R,∀z ∈ R, z < y ⇒ xz < 0.

(c) (3 pts) ∃x ∈ R,∀y ∈ R, y > 0 ⇒ y − x > 1.

(d) (4 pts) ∃x ∈ R,∀y ∈ R,−x < y < x ⇒ y2 < 0.1.

(e) (4 pts) ∀x ∈ R,∃y ∈ R, x 6= 1 ⇒ xy = x + y.

(f) (6 pts) (B ∩ C)− A ⊆ C − (A ∩B).

6. (5 pts) Show tht the sequence

an =
1

2n + 3

is null, i.e. ∀ε ∈ R+,∃N ∈ Z, n ≥ N ⇒ |an| < ε.

7. (8 pts) Let g : X → Y and f : Y → Z. Show that if f ◦ g is a bijection then g is an
injection and f is a surjection.

1
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1. Introduction

The treatment of Euclidean geometry you will find presented in these notes is loosely
based1 on an approach proposed by Garrett Birkhoff in 1932. Birkhoff, in turn, was heavily
influenced by earlier work of David Hilbert (1899) and Morris Pasch (1882). However, all of
these approaches — and indeed, virtually all other approaches to axiomatic plane geometry
— are essentially refinements of Euclid’s classical treatise, the Elements. The latter text,
written about 300 BC, provided such a beautifully logical development of plane geometry
that its absolute authority remained essentially unchallenged for well over 2000 years.

1.1. Euclidean geometry as an axiomatic theory. Euclidean geometry tries to de-
scribe geometric properties of various subsets of the plane. The geometric figures we will
discuss should be understood to be sets of points; we will use capital letters for points and
write P ∈ m for “the point P belongs to the figure m,” or “the figure m contains the point
P .” The notion of “point” is taken to be fundamental, and we will not attempt to explain
it in terms of simpler notions. There are some other basic notions (line, distance, angle
measure) that are also left undefined. Instead, we will simply postulate some rules which
these objects obey; these “postulates” are usually called the “axioms of Euclidean geome-
try.” All results in Euclidean geometry should be proved by deducing them from
the axioms; justifications such as, “it is obvious,” “it is well-known,” or “it is clear from
the figure” are not acceptable. We allow use of all tautologies and laws of logic. We also
assume standard facts about the real numbers and their properties.

Although a monumental achievement of classical civilization, Euclid’s Elements must un-
fortunately be judged to be somewhat deficient by current mathematical standards of clarity
and rigor. For this reason, various modern authors have developed their own systematic ways
of remedying the limitations of Euclid’s framework. As there are, however, several different
but equally satisfactory ways of accomplishing this, different modern books on geometry
typically use slighlty different sets of axioms. For this reason, you are advised to exercise
considerable care when comparing these notes to any other treatment of the subject.

1.2. Basic objects. The following concepts are the bedrock on which we will build our
theory. No attempt will be made to define or explain them in terms of anything simpler.
However, everything else in these notes will be defined in terms of these basic notions.

• Points: the plane is assumed to consist of elements, called points.
• Lines: certain special subsets of the plane will be called lines;
• Distances: for any two points A and B, it is assumed that there is a real number
|AB|, called the distance between A and B.

• Angle measures: we will eventually introduce some special geometric figures, called
angles. For every angle ∠ABC, it will be assumed that there there is an associated
real number m∠ABC, called the measure of the angle.

1In writing these notes, Stony Brook faculty members made use of numerous secondary sources, including
textbooks by G. E. Martin, by E. G. Golos, and by C. R. Wylie, Jr.
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2. Incidence Axioms

In this section, we introduce the first axioms which deal with lines, points, and the relation
that “the point P lies on the line l.” This relation is often called an incidence relation; hence
the name of this section. We will not discuss distances or angles yet; they will be treated
later by other axioms.

2.1. First Concepts and Axioms.

Incidence Axiom.

(1) For any two distinct points, there is a unique line that contains these two points.
(2) Every line contains at least two distinct points.
(3) For any line, there exists a point not on this line.

We will denote the unique line containing points A, B by
←→
AB.

Definition 2.1. Two lines l,m are said to be transverse if they are distinct (l 6= m) and have
at least one point in common. When this is true, we will write l>∩m.

This is slightly different from saying that l and m intersect as point sets. (Why?) Nonethe-
less, the word intersecting is often used to mean “transverse” in contexts where this is unlikely
to cause any confusion.

Definition 2.2. Two lines l and m are called parallel if they are not transverse. When this
is true, we will write l‖m.

Notice that, by this definition, any line is parallel to itself.

Exercise 2.1: Show that two lines l and m are parallel iff either

• l ∩m = ∅; or
• l = m.

Exercise 2.2: Show that l‖m ⇐⇒ m‖l.

Parallel Axiom. For any line l and a point P not on l, there exists a unique line containing
P and parallel to l.

2.2. First theorems.

Theorem 2.1. The intersection of two transverse lines consists of exactly one point.

Exercise 2.3: Prove this theorem.

Definition 2.3. Two transverse lines are said to meet at their unique point of intersection.

Theorem 2.2. For any lines l,m, n, if l‖m and m‖n, then l‖n.

Exercise 2.4: Prove this theorem.

Exercise 2.5: Let A, B, C be distinct points such that C lies on the line
←→
AB. Show that

then A lies on the line
←→
BC.

Exercise 2.6: Let l,m, n be lines such that l‖m and n>∩ l. Show that n>∩m.
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2.3. Historical remarks. Our Parallel Axiom corresponds to the Fifth Postulate in Eu-
clid’s classical treatment. Starting in the Middle Ages, some scholars wondered whether
it was redundant, in the sense that it might actually be a logical consequence of Euclid’s
other postulates. In the 1830’s, however, Bolyai and Lobachevsky independently became
convinced that this could not be the case, and proposed a conjectural alternative geometry,
in which the Parallel Axiom fails, but all the other axioms of Euclidean geometry still hold.
Half a century later, the logical consistency of this alternative geometry was definitively
proved by Klein and Poincaré, who constructed explicit coordinate models of the so-called
“non-Euclidean plane” or “hyperbolic plane”. For a wonderfully readable, yet mathemat-
ically precise account, see Hilbert and Cohn-Vossen, Geometry and the Imagination,
§§34-35.
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3. Ruler Axiom

In this section we impose a new axiom which describes properties of distance and order
relation for points on a line.

3.1. Ruler Axiom.

Ruler Axiom. Let l be any line. Then there is a one-to-one correspondence f : l → R such
that, for any two points A, B on l, |AB| = |f(A)− f(B)|.

Here the statement that f is a one-to-one correspondence means that for every t ∈ R, there
is exactly one point P ∈ l such that f(P ) = t. In particular, we must have f(P ) 6= f(Q)
whenever P 6= Q.

This axiom roughly says that any line “looks like” the usual number line R. This allows
us to use known properties of R to prove many results about points on lines.

A one-to-one correspondence f : l → R with the distance property stipulated by the Ruler
Axiom is called a coordinate system on l. It is not unique: there are many coordinate systems
on a given line.

Exercise 3.1: Suppose that f : l → R is a coordinate system on the line l, and let c ∈ R be
any real constant. Define g : l → R and h : l → R by

g(A) = c + f(A)

h(A) = c− f(A)

for all A ∈ l. Show that g and h are also coordinate systems on l.

Theorem 3.1. Let P and Q be distinct points. Then there exists a coordinate system f on

the line
←→
PQ such that f(P ) = 0 and f(Q) > 0.

Exercise 3.2: Prove this theorem, using Exercise 3.1.

Exercise 3.3: Let f be a coordinate system on
←→
PQ which satisfies the conditions of Theo-

rem 3.1. For every A ∈
←→
PQ, show that

f(A) =

{
|PA|, if |QA| < |QP | or |QA| < |PA|

−|PA|, otherwise.

(Hint: if c is a positive constant, first show that a real number x is positive iff either |x−c| < c
or |x− c| < |x|.) Then use this to show that the added conditions stipulated by Theorem 3.1

in fact determine a unique coordinate system on
←→
PQ.

Exercise 3.4: Let f be the coordinate system on
←→
PQ given by Theorem 3.1. If g is any

coordinate system on
←→
PQ for which g(P ) < g(Q), use Exercise 3.3 to show that

g(A) = c + f(A),

where c = g(P ). Similarly, if h is any coordinate system on
←→
PQ for which h(P ) > h(Q),

show that
h(A) = c− f(A),

where c = h(P ).
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3.2. Order on a line.

Definition 3.1. Let A, B, C be points on a line l. We say that B is between A and C if
there is a coordinate system f on l such that f(A) < f(B) < f(C). When this is true, we
write A−B − C.

Exercise 3.5: Show that A−B − C iff C −B − A.

Exercise 3.6: Let g be any coordinate system on a line l. If A, B, C are three points of l, use
Exercise 3.4 to show that A−B −C iff either g(A) < g(B) < g(C) or g(A) > g(B) > g(C).

Definition 3.2. Let A, B be distinct points. Then the segment AB is the set of all points

C on the line
←→
AB such that A− C −B.

Note that according to this definition, the endpoints A and B are not included in AB.

Definition 3.3. Let A, B, C be points on a line l, where A 6= C and B 6= C. Then we will
say that A and B are on opposite sides of C if A − C − B. On the other hand, we will say
that A and B are on the same side of C if they are not on opposite sides of C.

Exercise 3.7: Let A, B, C be points on a line l, where A 6= C and B 6= C. Show that A
and B are one the same side of C iff one of the following holds:

• A = B:
• C − A−B; or
• C −B − A.

Theorem 3.2.

(1) Given three distinct points on a line, exactly one of them lies between the other two.
(2) Let A, B, C,D be points on a line l, and suppose that none of the other three points

is equal to D. If A and B are on the same side of D, and if B and D are on the
same side of D, then A and C are on the same side of D.

Exercise 3.8: Prove this theorem.

Theorem 3.3. Let V be a point on the line l. Then the complement of V in l is the union
of two disjoint subsets R1 and R2, such that

• if A, B ∈ R1, then A and B are on the same side of V ;
• if A, B ∈ R2, then A and B are on the same side of V ; but
• if A ∈ R1 and B ∈ R2, then A and B are on opposite sides of V .

The subsets R1 and R2 of l are called rays, or half-lines.

In other words, any point on a line “divides the line into two rays.”

Proof. Choose a coordinate system on l such that f(V ) = 0; by Theorem 3.1, such a coor-
dinate system exists. Define R1 to consist of those points A with f(A) > 0, and define R2

to consist of those points A with f(A) < 0. The stated properties of R1 and R2 then follow
from the fact that 0 lies between two real numbers iff one is positive and one is negative. �

Definition 3.4. Let V and A be distinct points. By Theorem 3.3, V then divides the line
←→
V A into two rays, and exactly one of these rays will contain A. We will denote this preferred

ray by
−→
V A.
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Theorem 3.4. Let
−→
V A be a ray, and suppose B ∈

−→
V A. Then

−→
V B=

−→
V A.

Exercise 3.9: Prove this theorem.

3.3. Properties of distance. Here are some easy but useful consequences of the Ruler
Axiom.

Theorem 3.5. For any A, B, |AB| ≥ 0. Moreover, |AB| = 0 iff A = B.

Exercise 3.10: Prove this theorem.

Theorem 3.6. Let A, B, C be distinct points such that B ∈ AC. Then

|AB|+ |BC| = |AC|.

Exercise 3.11: Prove this theorem.

Exercise 3.12: Let
−→
V A be a ray, and let r be a positive real number. Show that there is a

unique point P on the ray
−→
V A such that |V P | = r.

Exercise 3.13: If B ∈
−→
V A and |V B| < |V A|, then V −B − A.

Exercise 3.14: Let A and B be distinct points. Show there exists a unique point M on the
segment AB such that |AM | = |MB|. (This point is called the midpoint of AB.)
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4. Protractor Axiom

The purpose of this section is to discuss angles and their measures. Before we can do so,
however, we will first need to introduce the notion of a half-plane.

Definition 4.1. Let l be a line in the plane, and let P and Q be points which are not on l.
Then we will say that P and Q are on opposite sides of l if P 6= Q and the line segment PQ
meets l. We will say that P and Q are on the same side of l if they are not on opposite sides
of l.

4.1. Plane separation axiom.

Plane Separation Axiom. Let l be a line, and let P , Q, and R be three points which do
not lie on l. If P and Q are on the same side of l, and if Q and R are on the same side of
l, then P and R are also on the same side of l.

Theorem 4.1. The complement of any line l is the union of two disjoint non-empty sets
H1 and H2, such that

• If A, B ∈ H1, then A and B are on the same side of l;
• If A, B ∈ H2, then A and B are on the same side of l; and
• If A ∈ H1 and B ∈ H2, then A and B are on opposite sides of l.

Definition 4.2. The two subsets H1 and H2 in the above theorem are called half-planes

Thus, the plane separation axiom essentially says that any line divides the plane into two
half-planes.

4.2. Angles and their interiors.

Definition 4.3. An angle is the figure consisting of a point A and two distinct rays starting

at A. The angle formed by rays
−→
AB and

−→
AC is denoted by ∠BAC.

Later in these notes, we will sometimes use the abbreviated notation ∠A for ∠BAC if it
is absolutely clear from the context which rays form the sides of the angle.

Definition 4.4. We will say that ∠BAC is a straight angle if A ∈ BC.

Exercise 4.1: Show that an angle ∠BAC is a straight angle iff there is a single line which
contains all three of the points A, B, C.

Definition 4.5. Suppose that ∠BAC is not a straight angle. Then the interior of ∠BAC is
the set of those points which are simultaneously

• on the same side of
←→
AB as C; and

• on the same side of
←→
AC as B.

By contrast, when ∠BAC is a straight angle, we will allow ourselves to choose a half-plane

on one side of
←→
BC, and then refer to this chosen half-plane as the “interior” of ∠BAC. (Of

course, however, the opposite half-plane would have made an equally valid choice).

Exercise 4.2: If ∠BAC is not a straight angle, D lies in the interior of ∠BAC iff

• D /∈
←→
AB;
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• D /∈
←→
AC;

• DB ∩
←→
AC= ∅; and

• DC ∩
←→
AB= ∅.

Exercise 4.3: If C lies in the interior of ∠BAD, show that

every other point of
−→
AC lies in the interior of ∠BAD, too. In

this case, we will say that
−→
AC lies inside of ∠BAD.

A

C

B

D

4.3. Angle measure. One of the basic undefined notions of Euclidean geometry is that of
angle measure: it is assumed that for each angle ∠ABC, there is an associated positive real
number m∠ABC called the measure of ∠ABC. No attempt is made to give a definition of
this measure. Instead, the Protractor Axiom below simply specifies some of its properties.
It is common to use Greek letters α, β, γ, . . . , ϕ, θ for angle measures.

4.4. Historical note. The phrase “measure of an angle” is actually relatively modern.
Up to about 50 years ago, the measure of the angle at A was simply denoted by A or ∠A, and
it was left to the reader to distinguish between the angle and its measure. When convenient,
we will follow this convention, and use the same notation for an angle and its measure.

4.5. The Protractor axiom.

Protractor Axiom.

(1) For any angle ∠BAC, 0 < m∠BAC ≤ π.
(2) If ∠BAC is a straight angle, then m∠BAC = π.

(3) Let A, B be distinct points, and let H be one of half-planes into which
←→
AB divides

the plane. Then, for any α ∈ R with 0 < α < π, there exists a unique ray
−→
AC in the

half-plane H such that m∠BAC = α.

(4) If ray
−→
AC lies inside ∠BAD, then m∠BAD = m∠BAC + m∠CAD.

Note that we measure the angles in radians, so that the measure of straight angle is π rather
than 180. Also, we always measure the smaller of the two sectors formed by two rays, so the
measure of any angle is at most π.

Exercise 4.4: Let A, B be distinct points, and let H be one of the half-planes into which
←→
AB divides the plane. For any real numbers r and α such that r > 0 and 0 < α < π, show
there exists a unique point C in H such that |AC| = r and m∠BAC = α. (Please note that
you can only use the results we have proved; in particular, we do not yet know anything
about circles!)

4.6. When rays are inside an angle. We now come to two important results charac-
terizing when a ray lies inside an angle. First of all, we have:



MAT 200 COURSE NOTES ON GEOMETRY 11

Theorem 4.2 (Monotonicity of angles). Let A, B, C,D be distinct points such that C and

D lie on the same side of the line
←→
AB. Then m∠BAD < m∠BAC iff

−→
AD is inside the angle

∠BAC.

Exercise 4.5: Show that, without the assumption that C, D lie on the same side of
←→
AB,

Theorem 4.2 would be false.

Exercise 4.6: Prove Theorem 4.2.

The second result discussed in this section is much more subtle:

Theorem 4.3 (Crossbar Theorem). Suppose that ∠BAC is a non-straight angle. Then the

ray
−→
AD is inside of ∠BAC if and only if

−→
AD meets the segment BC.

In one direction, this is actually straightforward:

Exercise 4.7: Suppose the
−→
AD meets the segment BC. Show that

−→
AD is inside of ∠BAC.

Part of the other direction is fairly manageable, too:

Exercise 4.8: Suppose that ∠BAC is a non-straight angle, and that
−→
AD is inside of ∠BAC.

Show that either

• the ray
−→
AD meets the segment BC; or else

• the lines
←→
AD and

←→
BC are parallel.

(Use the fact that every point of
←→
BC is either on the same side of

←→
AB as D, or else on the

same side of
←→
AC as D. Then show than any element of

←→
AD which has one of these properties

actually has both.)

To prove Theorem 4.3, it therefore suffices to show that
←→
AD and

←→
BC cannot be parallel.

In Exercise 6.1 below, you will be able to give a proof of this remaining fact, assuming the
Parallel axiom. We remark in passing, however, that Theorem 4.3 can actually be shown to
hold without assuming the Parallel axiom; it is true even in “non-Euclidean” geometry. Such
a proof, however, is much more difficult, and lies beyond the scope of the present notes.

4.7. Vertical and supplementary angles. Let l,m be distinct lines intersecting at
point A. Then these lines define four angles as shown in the figure below (again, this can be
proved but we omit the proof). In this situation, two angles are called supplementary if they
have a common side; otherwise, they are called vertical. Thus, in the figure below angles
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∠B1AC1 and ∠C1AB2 are supplementary, while ∠B1AC1 and ∠B2AC2 are vertical.

1B2B

C2

1C

α
1

α
2

β
2

1
β

A

Theorem 4.4.

(1) The sum of the measures of any two supplementary angles is π.
(2) Any two vertical angles have equal measure.

Proof. (1) By part (4) of the Protractor Axiom, the sum of the measures of supplemen-
tary angles is equal to the measure of a straight angle. But by part (b) of the same
axiom, the measure of the straight angle is π.

(2) Let α1, α2 and β1, β2 be the measures of two pairs of vertical angles, arranged as in
the figure above. Then by part (a), α1 + β1 = π. But also by part (a), α2 + β1 = π.
Subtracting these equalities, we get α1 = α2. In a similar way one proves that
β1 = β2.

�

This result shows that when we have two intersecting lines, they define two different angle
measures, α and β = π − α. The “measure of the angle between two lines” is therefore
ambiguous and undefined; one would need specify which of these is being used in order to
give this phrase a precise meaning.
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5. Triangles

5.1. Basics. A triangle is a figure consisting of three points, A, B, C, not lying on one line,
and the three segments connecting them, AB, BC, AC. The points A, B, C are called the
vertices of the triangle, and the segments AB, BC, and AC are called its sides. A triangle
with vertices A, B, C is denoted 4ABC.

Each triangle defines three angles, ∠BAC, ∠ABC, ∠BCA. In this context, it is common
to use the abbreviated notation ∠A, ∠B, ∠C if it is clear which triangle is being discussed.

Thus, every gives six real numbers: measures of the three angles and lengths of the three
sides. It is common to denote α = m∠A, β = m∠B, γ = m∠C and a = |BC|, b = |AC|, c =
|AB|

This definition formalizes our intuitive picture of a triangle as something built out of three
sticks joined together at the ends.

5.2. Congruence.

Definition 5.1. Two triangles, 4ABC and 4A′B′C ′, are congruent if the corresponding
angles have equal measures, and the corresponding sides have equal lengths. That is, the
triangles 4ABC and 4A′B′C ′ are congruent iff the following six conditions hold:

m∠A = m∠A′ |AB| = |A′B′|
m∠B = m∠B′ |AC| = |A′C ′|
m∠C = m∠C ′ |BC| = |B′C ′|

When this is true, we will write 4ABC ∼= 4A′B′C ′.

Please note that writing 4ABC ∼= 4A′B′C ′ not only indicates that the two triangles are
congruent, but also says that they are congruent in such a way that vertex A corresponds
to vertex A′, B to B′, and C to C ′.

Informally, the notion of congruence has the following intuitive meaning: If you imagine a
triangle as a physical object, constructed of sticks joined at their ends, then two triangles are
congruent if you can put one on top of another so that they exactly match. (Note that you
are allowed to turn a triangle “face down” in the process.) Euclid takes this for granted, but
unfortunately never defines what “moving” a triangle is supposed to mean! In fact, many
modern approaches to Euclidean geometry do rigorously define “rigid motions” of geometric
figures, via special transformations of the plane known as “isometries.” But it is often
the case in mathematics that one can actually accomplish a surprising amount by simply
formalizing a few aspects of an intuitive idea, and then pursuing the logical ramifications of
the resulting abstract concept. This is the point of view we will adopt herein.

5.3. The SAS congruence Axiom. The following is often called the SAS Axiom:

Side-Angle-Side Congruence Axiom. If 4ABC and 4A′B′C ′ are triangles such that

m∠ABC = m∠A′B′C ′, |AB| = |A′B′|, and |BC| = |B′C ′|,

then 4ABC ∼= 4A′B′C ′.
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One can also try other ways to specify a triangle in terms of three pieces of information,
such as three sides (SSS), three angles (AAA), two angles and a side, or two sides and an
angle. For two angles and a side, there are two possibilities, one in which the side connects
the two angles (ASA), and one in which it does not (AAS). For two sides and an angle, there
are also two possibilities, one in which the two sides are adjacent to the given angle (SAS)
and the other in which one is not (SSA).

Exercise 5.1: Convince yourself that SSS and ASA do define a triangle up to congruence,
but AAA and SSA do not. (We currently do not have enough tools to prove this rigorously,
so here you are merely being asked to draw some convincing diagrams.)

Exercise 5.2: Let A, B, C,D be points such that no three of them lie on a line, the segments
AC and BD intersect, and the intersection point M is the midpoint (see Exercise 3.14) for
each of them. Show that

(1) 4AMD ∼= 4CMB
(2) |AD| = |BC|, |AB| = |CD|
(3) m∠ABD = m∠BDC
(4) m∠ABC = m∠ADC.

(In §6.5, we will see that this shows that the quadrilateral ♦ABCD is a parallelogram.)

5.4. Congruence via ASA.

Theorem 5.1 (ASA). If 4ABC and 4A′B′C ′ are triangles such that

m∠ABC = m∠A′B′C ′, |BC| = |B′C ′|, and m∠ACB = m∠A′C ′B′,

then 4ABC ∼= 4A′B′C ′.

Proof. Suppose we are given two triangles4ABC and4A′B′C ′ which satisfy these hypothe-
ses. If |AB| and |A′B′| were the same, we could just invoke the SAS Axiom.

A

B

C

D

A

B

C’

’

’

So let us instead suppose that they are different, and show that
this leads to a contradiction. Without loss of generality, assume
that |A′B′| < |AB|; otherwise, just exchange the names of the
two triangles.

By the Ruler Axiom, we can find a point D on
−→
BA such that

|BD| = |B′A′|. Since |BD| < |BA|, D is between A and B, and
−→
CD is therefore inside ∠ACB. Hence m∠DCB < m∠ACB
by Theorem 4.2. But 4DCB ∼= 4A′C ′B′ by the SAS Axiom.
Hence m∠DCB = m∠A′C ′B′. But m∠A′C ′B = m∠ACB by
hypothesis. Thus

m∠DCB = m∠A′C ′B = m∠ACB > m∠DCB.

Therefore m∠DCB > m∠DCB, which is a contradiction.
Hence |AB| = |A′B′|, and 4ABC ∼= 4A′B′C ′ by SAS.

�

Exercise 5.3: In this proof, some of the references to our previous results are actually less
precise than could be desired. In some cases, for example, it might better to refer, not to an
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axiom or theorem, but rather to an associated exercise; in other places, no justification has
been given, but some citation would clearly be appropriate. Carefully check each step in the
proof, listing each such imprecision you find, and indicating the manner in which each could
be improved.

5.5. Isosceles triangles. A triangle is isosceles if two of its sides have equal length. The
two sides of equal length are called legs; the point where the two legs meet is called the apex
of the triangle; the other two angles are called the base angles of the triangle; and the third
side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next
theorem tells us that is equivalent to having two angles of equal measure.

Theorem 5.2 (Base angles equal). If4ABC is isosceles, with base BC, then m∠B = m∠C.
Conversely, if 4ABC has m∠B = m∠C, then it is isosceles, with base BC.

Exercise 5.4: Prove Theorem 5.2 by showing that 4ABC is congruent to its reflection
4ACB. Note that there are two parts to the theorem, and so you need to give essentially
two separate arguments.

5.6. Congruence via SSS.

Theorem 5.3 (SSS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, |AC| = |A′C ′|
and |BC| = |B′C ′|, then 4ABC ∼= 4A′B′C ′.

Proof. If the two triangles were not congruent, then one of the angles of 4ABC would have
measure different from the measure of the corresponding angle of 4A′B′C ′. If necessary,
relabel the triangles so that ∠A and ∠A′ are two corresponding angles which differ, with
m∠A′ < m∠A.

We find a point D and construct the ray
−→
AD so that m∠DAB = m∠A′, and |AD| = |A′C ′|.

(That this can be done follows from Exercise 4.4) It is unclear where the point D lies: it

could lie inside triangle ABC; it could lie on the line
←→
BC between B and C; or it could lie

on the other side of the line
←→
BC. We need to take up these three cases separately.

Exercise 5.5: Suppose the point D lies on the line
←→
BC. Explain why this yields an imme-

diate contradiction.

For both of the remaining cases, we draw the segments BD and CD. We observe that, by
SAS, 4ABD ∼= 4A′B′C ′. It follows that |BD| = |B′C ′| = |BC| and that |AD| = |A′C ′| =
|AC|. Hence 4BDC is isosceles, with base DC, and 4ADC is isosceles with base CD.
Since the base angles of an isosceles triangle have equal measure, m∠BDC = m∠BCD and
m∠ADC = m∠ACD.

B

A C

D

First, we take up the case that D lies outside 4ABC; that is,

D lies on the other side of
←→
BC from A.

Exercise 5.6: Finish this case of the proof, first by showing
that m∠ADC < m∠BDC and m∠BCD < m∠ACD. Then
use the isosceles triangles to arrive at the contradiction that
m∠ADC < m∠ADC.
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We now consider the case where D lies inside 4ABC. Let E

be a point on the line
←→
BC so that C is between B and E to some

point E. Observe that m∠BCD + m∠DCA + m∠ACE = π,
from which it follows that m∠BCD + m∠DCA < π. Next,
extend the segment BD past D to some point F . Also extend
the segment AD past the point D to some point G, and extend
the segment CD past the point D to some point H.

Exercise 5.7: Finish this case of the proof by explaining why
π < m∠BDC + m∠CDA and m∠BCD + m∠DCA < π, and
then show that this leads to the contradiction π < π.

B

A

H

F C

E

GD

�
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5.7. Congruence via AAS.

Theorem 5.4 (AAS). Suppose we are given triangles ABC and A′B′C ′, where m∠A =
m∠A′, m∠B = m∠B′, and |BC| = |B′C ′|. Then 4ABC ∼= 4A′B′C ′.

This theorem can be proved by methods similar to those used in the proofs above. We
will skip this for now, however, and will instead give a much simpler proof later, using a
celebrated result about the sum of the angles of any triangle.

This concludes our generalities concerning congruences of triangles. We have now seen
four basic congruence results: ASA, SAS, SSS and AAS. We also have seen that the other
two possibilities, SSA and AAA, are simply not valid. It follows that, for example, if we are
given the lengths of all three sides of a triangle, then the measures of all three angles are
determined. However, we do not as yet have any means of computing the measures of these
angles in terms of the lengths of the sides.

5.8. Median, altitude, and bisector in an isosceles triangle.

Definition 5.2. Two lines intersecting at a point A are perpendicular or orthogonal if each
of the four angles at A has measure π/2. These angles are called right angles.

It is standard mathematical practice to use the words perpendicular and orthogonal to mean
precisely the same thing. Anyone who tries to draw a distinction between them is joking!

In any triangle 4ABC, there are three special lines passing through the arbitrary vertex
we have chosen to call A, namely:

• the altitude from A is perpendicular to
←→
BC;

• the median from A bisects BC, in the sense that it crosses
←→
BC at the midpoint D of

BC, which we constructed in Exercise 3.14; and
• the angle bisector bisects ∠A, in the sense that if E is the point where the angle

bisector meets BC, then m∠BAE = m∠EAC.

Exercise 5.8: For any triangle 4ABC, show there exists a unique median thorough A and
a unique angle bisector through A.

Later we will show the altitude from A actually exists, and is unique. Note that this isn’t
completely trivial!

For most triangles, the three lines through a given vertex we’ve just defined are all different.
For an isosceles triangle, however, they all actually coincide:

Theorem 5.5. If B is the apex of the isosceles triangle ABC, and BM is the median, then
BM is also the altitude, and is also the angle bisector, from B.

Proof. Consider triangles4ABM and4CBM . Then |AB| = |CB| (by definition of isosceles
triangle), |AM | = |CM | (by definition of midpoint), and m∠MAB = m∠MCB (by Theo-
rem 5.2). Thus, by the SAS Axiom, 4ABM ∼= 4CBM . Therefore, m∠ABM = m∠CBM ,
so BM is the angle bisector.

Also, m∠AMB = m∠CMB. On the other hand, by Protractor Axiom, m∠AMB +
m∠CMB = m∠AMC = π. Thus, m∠AMB = m∠CMB = π/2. �
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5.9. Inequalities for general triangles.

Theorem 5.6 (Exterior angle inequality). Consider the triangle

4ABC. Let D be some point on the ray
−→
BC, where C lies

between B and D. Then

(1) m∠ACD > m∠B.
(2) m∠ACD > m∠A. DCB

A

We will later prove a much stronger result, namely, that m∠ACD = m∠A + m∠B.
However, to get this stronger statement we will need to also invoke the Parallel Axiom,
whereas the result we are about to prove remains true even in “hyperbolic geometry,” where
all of our axioms except the Parallel Axiom hold.

Notice that the following proof depends only on direct use of the SAS Axiom, together
with easy consequences of the Incidence, Ruler and Protractor Axioms. This will be an point
important point when we finish the proof of Theorem 4.3 in Exercise 6.1.

Proof. We first prove part (1).

Choose E to be the midpoint of the segment BC, and extend
AE beyond E to F , so that |AE| = |EF |. Now extend FC
beyond C to some point G.

Exercise 5.9: Finish the proof of part (1) by showing that
m∠B = m∠BCF = m∠DCG < m∠DCA. (Hint: use Exer-
cise 5.2.)

DB

A

E

F

G

C

DCB

A

E

F

Exercise 5.10: Give a proof of part (2) using the figure at left
(E is the midpoint of AC, and |EF | = |BE|.)

�

We already know that if two sides of a triangle are equal, then the angles opposite to these
sides are also equal (Theorem 5.2). The next theorem extends this result: in a triangle, if
one angle is bigger than another, the side opposite the bigger angle must be longer than the
one opposite the smaller angle.

Theorem 5.7. In 4ABC, if m∠A > m∠B, then we must have |BC| > |AC|.

Proof. Assume not. Then either |BC| = |AC| or |BC| < |AC|.
Exercise 5.11: Show that if |BC| = |AC|, the assumption m∠A > m∠B is contradicted.
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Now assume |BC| < |AC|, find the point D on AC so that

|BC| = |CD|, and draw the line
←→
BD. Then 4BCD is isosceles,

with apex at C. Hence m∠CBD = m∠CDB. Since ∠CDB
is an exterior angle for 4ABD, by Theorem 5.6, m∠CDB >
m∠A. Also, since D lies between A and C, m∠DBC <
m∠ABC. We now have that m∠CBD < m∠CBA < m∠A <
m∠CDB = m∠CBD; so we have reached a contradiction.

CB

A
D

�

The converse of the previous theorem is also true: opposite a long side, there must be a
big angle.

Theorem 5.8. In 4ABC, if |BC| > |AC|, then m∠A > m∠B.

Proof. Assume not. If m∠A = m∠B, then 4ABC is isosceles, with apex at C, so |BC| =
|AC|, which contradicts our assumption.

If m∠A < m∠B, then, by the previous theorem, |BC| < |AC|, which again contradicts
our assumption. �

The following theorem doesn’t quite say that a straight line provides the shortest route
between two points, but what it does say is certainly closely related. This result is constantly
used throughout much of mathematics, and is known as “the triangle inequality”.

Theorem 5.9 (The Triangle Inequality). In any triangle 4ABC,

|AB|+ |BC| > |AC|.

Proof. Extend the segment AB past B to the point D so that |BD| =
|BC|, and join the points C and D with a line to form4ADC. Observe
that 4BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD.
It is immediate that m∠DCB < m∠DCA. Looking at 4ADC, it
follows that m∠D < m∠C; by Theorem 5.7, this implies |AD| > |AC|.
Our result now follows, since |AD| = |AB|+ |BD| by Theorem 3.6. �

B C

D

A
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6. Parallel Lines Revisited

Looking over the proofs in the previous sections, we see that we haven’t used the Parallel
Axiom since Section 2. For example, our congruence rules for triangles were proved without
using this axiom. In this section, we will see what new results can be obtained from the
Parallel Axiom.

6.1. Alternate interior angles. We will meet the following situation some number of
times. We are given two lines k1 and k2, and a third line m, where m crosses k1 at A1 and m
crosses k2 at A2. Choose a point B1 6= A1 on k1, and choose a point B2 6= A2 on k2, where
B1 and B2 lie on opposite sides of the line m. Then ∠B1A1A2 and ∠B2A2A1 are referred to
as alternate interior angles.

In any given situation, there are two distinct pairs of alternate
interior angles. That is, let C1 be some point on k1, where B1

and C1 lie on opposite sides of m, and let C2 be some point on
k2, where C2 and B2 lie on opposite sides of m. Then one could
also regard ∠C1A1A2 and ∠C2A2A1 as being alternate interior
angles. However, observe that m∠B1A1A2 + m∠C1A1A2 = π
and m∠B2A2A1 + m∠C2A2A1 = π. It follows that one pair of
alternate interior angles are equal if and only if the other pair
of alternate interior angles are equal.

A

A1 B 1

C

C 1
k1

k
B

2

222

m

Theorem 6.1. If the alternate interior angles are equal, then the lines k1 and k2 are parallel.

Proof. Suppose not. Then the lines k1 and k2 meet at some point D. If necessary, we
interchange the roles of the Bi and the Ci so that ∠B1A1A2 is an exterior angle of 4A1A2D.
Then D and B2 lie on the same side of m, so ∠DA2A1 = ∠B2A2A1. By the exterior angle
inequality,

m∠B1A1A2 > m∠A1A2D = m∠B2A2A1 = m∠B1A1A2,

so we have reached a contradiction. �

6.2. Characterization of parallel lines. Let k1 be a line, and let A2 be a point not
on k1. Pick some point A1 on k1 and draw the line m through A1 and A2. By the Protractor
Axiom, we can find a line k2 through A2 so that the alternate interior angles are equal.
Hence we can find a line through A2 parallel to k1.

Theorem 6.2 (Alternate Interior Angles Equal). Two lines k1 and k2 are parallel if and
only if the alternate interior angles are equal.

Proof. To prove the forward direction, construct the line k3 through A2, where there is a
point B3 on k3, with B3 and B2 on the same side of m, so that m∠B3A2A1 = m∠B1A1A2.
Then, by Theorem 6.1, k3 is a line through A2 parallel to k1. The Parallel Axiom implies
k3 = k1. Hence m∠B3A2A1 = m∠B2A2A1, and the desired conclusion follows.

The other direction is just Theorem 6.1, restated as part of this theorem for convenience.
�
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Exercise 6.1: Let ∠BAC be a non-straight angle, and choose D so that
←→
AD‖

←→
BC. Use

Theorem 6.2 to show that either D and B are on opposite sides of
←→
AC, or else that D and

C are on opposite sides of
←→
AB. Conclude that D cannot be in the interior of ∠BAC.

Notice that the proof of Theorem 5.6 only depends on Theorem 6.2, along with the Parallel
and SAS axioms; most importantly, it does not logically depend on the Crossbar Theorem in
any way. For this reason, Exercise 6.1, together with Exercise 4.7 and Exercise 4.8, provides
a complete proof of Theorem 4.3.

6.3. Perpendicular lines. Recall that a right angle is an angle of measure π/2, and that
two intersecting lines are called perpendicular, or orthogonal, if all four angles formed by
these lines are right angles (notation: l ⊥ m). Using Theorem 4.4 (about vertical and
complementary angles), it is easy to see that if one of the four angles is a right angle, then
so are all of them.

Proposition 6.3. Let m ‖ n, l ⊥ m. Then l ⊥ n.

Theorem 6.4. For any line l and a point P , there exists a unique line n such that P ∈
n, n ⊥ l. This line is called the perpendicular from P to l.

Proof. Existence: Let Q be an arbitrary point on l. By the Pro-
tractor Axiom, there exists a line m going through Q such that
m ⊥ l. Now let n be the line going through P and parallel to
m (exists by the Parallel Axiom). By Proposition 6.3, n ⊥ l.

Uniqueness: Assume n1, n2 are two lines, both containing P and
perpendicular to l. Then, by Theorem 6.2, these two lines are
parallel: n1 ‖ n2. But by definition, if two parallel lines have a
common point, they must coincide, i.e. n1 = n2.

�

P

Q

m n

l

Exercise 6.2: Let A, B be distinct points and let M1, M2 be points on different sides of the

line
←→
AB such that |AM1| = |AM2|, |BM1| = |BM2|. Show that

←→
M1M2⊥

←→
AB.

6.4. The sum of the angles of a triangle.

Theorem 6.5. The sum of the measures of the angles of a triangle is equal to π.

Proof. Consider 4ABC, and let m be the line passing through A and
parallel to BC.

Exercise 6.3: Use alternate interior angles to complete the proof of
this theorem.

� B C

A
m

Exercise 6.4: Prove that the external angle of a triangle is equal to the sum of two other
angles, i.e., m∠ACD = m∠A + m∠B (notation as in Theorem 5.6).

Exercise 6.5: Prove Theorem 5.4 (congruence via AAS).
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6.5. Parallelograms and rectangles. A quadrilateral is a figure consisting of four
points A, B, C,D (vertices) and segments AB, BC, CD,DA (sides), such that all points are
distinct, no three points lie on the same line, and no two sides intersect (except at vertices).
We will denote the resulting figure by ♦ABCD.

A quadrilateral ♦ABCD is said to be convex if A and C are on opposite sides of
←→
BD, and

if B and D are on opposite sides of
←→
AC.

Exercise 6.6: Show that the quadrilateral ♦ABCD is convex iff its “diagonal” line segments
AC and BD meet in a point.

Exercise 6.7: If ♦ABCD is a convex quadrilateral, use the Crossbar Theorem to show that
C is in the interior of ∠BAD.

Exercise 6.8: Show that the sum of the measures of the angles in a convex quadrilateral is
equal to 2π. (Hint: cut the quadrilateral into two triangles.)

Exercise 6.9: In the previous exercise, what goes wrong if ♦ABCD is not convex? (Hint:
by our conventions, the measure of an angle can never exceed π.)

Definition 6.1. A parallelogram is a quadrilateral ♦ABCD in which

opposite sides are parallel; that is,
←→
AB is parallel to

←→
CD, and

←→
AD is

parallel to
←→
BC.

A

B C

D

Lemma 6.6. Any parallelogram is a convex quadrilateral.

Proof. Since CD does not meet
←→
AB and BD does not meet

←→
AC, C is in the interior of ∠BAD

by Exercise 4.2. Thus
−→
AC meets BD by the Crossbar Theorem. Similarly,

−→
CA meets BD.

Since
←→
AC meets

←→
BD in only one point, and since

−→
AC ∩

−→
CA= AC, it follows that AC meets

BD. Hence ♦ABCD is convex by Exercise 6.6. �

Theorem 6.7. Let ♦ABCD be a parallelogram. Then m∠A = m∠C; m∠B = m∠D;
|AB| = |CD|; and |BC| = |AD|.

Exercise 6.10: Prove this theorem. (Hint: Draw a diagonal.)

Theorem 6.8. If ♦ABCD is a quadrilateral in which |AB| = |CD| and |AD| = |BC|, then
♦ABCD is a parallelogram.

Exercise 6.11: Prove this theorem.

Definition 6.2. A rectangle is a quadrilateral in which all four angles are right angles. A
rectangle with all four sides of equal length is called a square.

Theorem 6.9. Any rectangle is a parallelogram.

Exercise 6.12: Prove this theorem.

Exercise 6.13: Let ♦ABCD be a parallelogram with diagonals of equal length (that is,
|AC| = |BD|). Then ♦ABCD is a rectangle.
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7. Similarity, and the Pythagorean Theorem

7.1. Similar triangles. We say that triangles 4ABC and 4A′B′C ′ are similar, with
constant of proportionality k, if ∠A = ∠A′, ∠B = ∠B′, ∠C = ∠C ′ and

|A′B′|
|AB|

=
|B′C ′|
|BC|

=
|A′C ′|
|AC|

= k.

If this holds for some positive real number k, we write 4ABC ∼ 4A′B′C ′.
From this definition, it is clear that 4ABC ∼= 4A′B′C ′ iff they are similar with constant

of proportionality k = 1.

Exercise 7.1: Show that if4ABC ∼ 4A′B′C ′ with constant k1 and4A′B′C ′ ∼ 4A′′B′′C ′′

with constant k2, then 4ABC ∼ 4A′′B′′C ′′ with constant k1k2.

7.2. Key theorem. The key tool in the study of similar triangles is the following theorem.

Theorem 7.1. Consider a triangle 4ABC and let B′ ∈
−→
AB,

C ′ ∈
−→
AC be such that lines

←→
BC and

←→
B′C ′ are parallel. Then

|AB′|
|AB|

=
|AC ′|
|AC| A B

C

C

B

Exercise 7.2: Assuming Theorem 7.1, use the Parallel Axiom to show, conversely, that if

B′ ∈
−→
AB, C ′ ∈

−→
AC are such that |AC′|

|AC| = |AB′|
|AB| , then

←→
B′C ′‖

←→
BC.

The proof of Theorem 7.1 is surprisingly difficult, and will be completed in stages. We begin
by proving the following important special case:

Lemma 7.2. Theorem 7.1 is true in the special case in which |AB′|
|AB| = n is a positive integer.

Proof. Divide the segment AB′ into n equal length pieces, i.e. find on it points B1 =
B, B2, . . . , Bn = B′ such that |AB1| = |B1B2| = · · · = |Bn−1Bn|. Through each point Bi,

draw a line li which is parallel to
←→
BC. Let Ci be the intersection point of li with

−→
AC.

Next, for each Ci, draw a line parallel to
←→
AB and let Di be the intersection point of this

line with line Bi+1Ci+1.

B
1

B
3

B
n

B
n−1

B
2

1
C

C
2

C
3

C
n

n−1
C

1
D

D
2

D
n−1

A

Exercise 7.3: Show that each of triangles CiDiCi+1 is congruent to the triangle ABC.
(Hint: ♦BiCiDiBi+1 is a parallelogram.)
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Thus, |CiCi+1| = |AC|, so |AC ′| = n|AC|, and

|AC ′|
|AC|

= n =
|AB′|
|AB|

�

Exercise 7.4: Use Lemma 7.2 to prove Theorem 7.1 in the case when |AB′|
|AB| = 1

m
for some

positive integer m.

Exercise 7.5: Now combine Lemma 7.2 and Exercise 7.4 to prove Theorem 7.1 in the case

when |AB′|
|AB| = n

m
is any positive rational number.

Now, one of the fundamental properties of the real numbers R is that one can find rational
numbers between any two distinct real numbers:

∀x, y ∈ R [x < y =⇒ ∃q ∈ Q (x < q < y)]

Using this fact about R, we can now complete the proof of our key theorem.

Proof of Theorem 7.1. Set

k1 =
|AB′|
|AB|

and k2 =
|AC ′|
|AC|

.

We will show by contradiction that k1 = k2. Indeed, suppose not. Then the trichotomy
axiom for R tells us that either k1 < k2, or else k2 < k1. We will show that either of these
possibilities leads to a contradiction.

If k1 < k2, we can choose a rational number q = n
m

such that k1 < q < k2. Let B′′ be the

unique point of
−→
AB such that

|AB′′|
|AB|

= q

and let C ′′ be the point of
−→
AC such that

←→
B′′C ′′ ‖

←→
BC:

��
���

���
���

���
�

A AA
B

C
A

A
A

A
A

A

B′

C ′

A
A

A
A

A
AA

B′′

C ′′

Now |AB′| < |AB′′|, since k1 < q. Hence A − B′ − B′′, and A is therefore on the opposite

side of
←→

B′C ′ from B′′. But B′′ and C ′′ are on the same side of
←→

B′C ′, since B′′C ′′ is parallel

to
←→

B′C ′, and so does not meet it. The Plane Separation Axiom therefore tells us that A and

C ′′ are on opposite sides of
←→

B′C ′. Hence A− C ′ − C ′′, so |AC ′| < |AC ′′|, and therefore

k2 =
|AC ′|
|AC|

<
|AC ′′|
|AC|

.
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But
|AC ′′|
|AC|

=
|AB′′|
|AB|

= q

by Exercise 7.5, so it follows that k2 < q. But since q was chosen at the outset to satisfy
q < k2, this is a contradiction. Thus k1 < k2 is impossible.

In much the same way, we also obtain a contradiction if k2 < k1. Indeed, if k2 < k1, we
can instead choose a rational number q such that k2 < q < k1, and once again choose B′′ on
−→
AB so that

|AB′′|
|AB|

= q

and C ′′ on
−→
AC so that

←→
B′′C ′′ ‖

←→
BC:

�
���

���
���

���
��

A AA
B

C
A

A
A

A
A

A

B′′

C ′′

A
A

A
A

A
AA

B′

C ′

This time, |AB′| > |AB′′|, since k1 > q. Hence A−B′′ −B′, and A is therefore on the same

side of
←→

B′C ′ as B′′. But C ′′ is on the same side of
←→

B′C ′ as B′′, and hence on the same side
as A, by the Plane Separation Axiom. Hence A− C ′′ − C ′. Thus |AC ′| > |AC ′′|, and

k2 =
|AC ′|
|AC|

>
|AC ′′|
|AC|

.

But
|AC ′′|
|AC|

=
|AB′′|
|AB|

= q

by Exercise 7.5, so we conclude that k2 > q. But since q was chosen to satisfy q > k2, this
is another a contradiction, and our proof is therefore complete. �

7.3. Existence of similar triangles.

Theorem 7.3. In the situation described by Theorem 7.1, 4ABC ∼ 4AB′C ′.

Proof. By Theorem 6.2 (alternate interior angles equal), ∠B = ∠B′ and ∠C = ∠C ′. By

Theorem 7.1, |AC′|
|AC| = |AB′|

|AB| . Thus, it remains to show that |BC′|
|BC| = |AB′|

|AB| .

Let A′ be a point on
−→
BA such that |A′B′| = |AB|, and let

C ′′ ∈
−→
BC be such that

←→
A′C ′′‖

←→
AC ′.

Exercise 7.6: Show that 4A′B′C ′′ ∼= 4ABC. A B

C

C

BA

C

Using Theorem 7.1, one easily sees that |B
′C′|

|B′C′′| =
|AB′|
|A′B′| . Since |A′B′| = |AB|, and |B′C ′′| =

|BC|, we get |B
′C′|
|BC| = |AB′|

|AB| . �
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Corollary 7.4. For any triangle 4ABC and a real number k > 0, there exists a triangle
4A′B′C ′ similar to 4ABC with constant k.

Exercise 7.7: For a triangle 4ABC, let D be the midpoint of AB and F be the midpoint
of AC. Show that

(1)
←→
DF‖

←→
BC

(2) |DF | = 1
2
|BC|

7.4. Similarity via AAA.

Theorem 7.5 (Similarity via AAA). Let 4ABC, 4A′B′C ′ be such that ∠A = ∠A′, ∠B =
∠B′, ∠C = ∠C ′. Then these triangles are similar.

Proof. Let k = |A′B′|
|AB| . Construct a triangle 4A′′B′′C ′′ which is similar to 4ABC with

constant of proportionality k. Then |A′B′| = |A′′B′′|, and ∠A = ∠A′ = ∠A′′, ∠B = ∠B′ =
∠B′′, ∠C = ∠C ′ = ∠C ′′. Thus, by ASA, 4A′B′C ′ ∼= 4A′′B′′C ′′. �

Theorem 7.6 (Similarity via SAS). Let 4ABC, 4A′B′C ′ be such that ∠A = ∠A′, |A
′B′|
|AB| =

|A′C′|
|AC| . Then these triangles are similar.

Exercise 7.8: Prove this theorem.

7.5. Pythagoras’ Theorem. A right triangle is a triangle in which one of the angles is a
right angle. The hypotenuse of a right triangle is the side opposing the right angle.

The following theorem, often attributed to Pythagoras, and so called the Pythagorean
Theorem, seems to have been known “experimentally” to the Babylonians and Egyptians
as early four thousand years ago, and there is considerable historical evidence that this
knowledge had spread to India and China by the time of Pythagoras’ time, some 2500 years
ago. It is quite plausible, however, that the first actual proof of the theorem may have been
found by Pythagoras’ school, and in any case, the earliest general proof to have come down
to us is the one in Euclid’s Elements. The proof given below is not as geometrically intuitive
as the one presumably discovered by Pythagoras — but it is far easier to derive from our
axioms!

Theorem 7.7 (Pythagorean Theorem). Let 4ABC be a right triangle, with ∠C being the
right angle. Then

|AB|2 = |AC|2 + |BC|2.

Proof. For brevity, set a = |BC|, b = |AC|, and c = |AB|. Drop a perpendicular from C to

AB; let M be the point where this perpendicular intersects
←→
AB.

Exercise 7.9: Show that 4ACM ∼ 4ABC, and deduce from
this that |AM | = b2/c.

Exercise 7.10: Show that4CBM ∼ 4ABC, and deduce from
this that |BM | = a2/c. A B

C

M
Combining these two exercises, we get

c = |AM |+ |MB| = a2

c
+

b2

c
.
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Multiplying both sides by c, we obtain the Pythagorean theorem a2 + b2 = c2. �

Exercise 7.11: The figure to the right can be used to give a more “geometrically obvious”
proof of Pythagoras’ theorem — if we allow ourselves to use the notion of “area”.

(1) By computing the area of the large square in two ways,
prove the Pythagorean theorem.

(2) Carefully analyze the proof of part (1) and list all the
properties of area you are using. Can you prove any
of them? (This, of course, depends on how one defines
area.)

Exercise 7.12: Let 4ABC and 4A′B′C ′ be such that |AB| = |A′B′|, |BC| = |B′C ′|, and
m∠C = m∠C ′ = π/2. Prove that 4ABC ∼= 4A′B′C ′.
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8. Circles and lines

8.1. Circles. A circle Σ is the set of points at fixed distance r > 0 from a given point, its
center. The distance r is called the radius of the circle Σ.

The circle Σ divides the plane into two regions: the inside, which is the set of points at
distance less than r from the center O, and the outside, which consists of all points having
distance from O greater than r. Note that every line segment from O to a point on Σ has
the same length r.

A line segment from O to a point on Σ is also called a radius; this should cause no confusion.
A line segment connecting two points of Σ is called a chord, if the chord passes through

the center, then it is called a diameter.
As above, we also use the word diameter to denote the length of a diameter of Σ, that is,

the number that is twice the radius.

8.2. Perpendicular bisector. Let A, B be distinct points. The perpendicular bisector of

segment AB is the line l which contains midpoint of AB and is perpendicular to
←→
AB.

Theorem 8.1. Let A, B be distinct points. Then |OA| = |OB| iff O lies on the perpendicular
bisector of AB.

Corollary 8.2. If A, B are two distinct points on a circle Σ, then the center of Σ lies on
perpendicular bisector of AB.

Proposition 8.3. A line k intersects a circle Σ in at most two points.

Exercise 8.1: Prove this proposition, using proof by contradiction.

8.3. Circumscribed circles. The circle Σ is circumscribed about 4ABC if all
three vertices of the triangle lie on the circle. In this case, we also say that the
triangle is inscribed in the circle.

Note that another way to describe a circle circumscribed about a triangle is to say that
it is the smallest circle for which every point inside the triangle is also inside the circle. In
this view, the problem of circumscribing a circle becomes a minimization problem. A given
triangle lies inside many circles, but the circumscribed circle is, in some sense, the smallest
circle which lies outside the given triangle.

It is not immediately obvious that one can always solve this minimization problem, nor
that the solution is unique.

Proposition 8.4 (Uniqueness of Circumscribed Circles). There is at most one circle cir-
cumscribed about any triangle.

Proof. Suppose there are two circles Σ and Σ′ which are circumscribed about 4ABC. Since
points A, B, and C lie on both circles, AB and BC are chords. By Corollary 8.2, the
perpendicular bisectors of AB and BC both pass through the centers of Σ and Σ′. Since
these two distinct lines can intersect in at most one point, Σ and Σ′ share the same center
O. Since AO is a radius for both circles, they have the same center and radius, and hence
are the same circle. �

Theorem 8.5 (Existence of Circumscribed Circles). Given 4ABC, there is always exactly
one circle Σ circumscribed about it.
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Proof. We need to show existence of a circumscribed circle; uniqueness was shown in Propo-
sition 8.4.

Let D and E be the midpoints of sides AB and BC respectively.
Draw the perpendicular bisectors of AB and BC, and let O be the
point where these two lines intersect (note that O need not be inside
the triangle). Draw the lines AO, BO and CO. By Theorem 8.1,
|AO| = |BO| (since O lies on the perpendicular bisector of AB);
similarly, |BO| = |CO|. Thus, if we denote r = |AO| = |BO| =
|CO|, and let Σ be the circle with center at O and radius r, then
points A, B, C are on Σ.

D

B
O

E

C

A

�

Corollary 8.6. In any triangle, the three perpendicular bisectors of the sides meet at a point.

Exercise 8.2: Explain why Theorem 8.5 implies this corollary.

8.4. Altitudes meet at a point.

Theorem 8.7. In any triangle 4ABC, the three altitudes meet at a point.

Proof. Draw line l through vertex A, such that l ‖
←→
BC; similarly, draw lines through vertices

B and C parallel to opposite sides of 4ABC. Let A′, B′, C ′ be the intersection points of
these lines, as shown in the figure.
Exercise 8.3: (1) Prove that each of triangles

4A′BC,4ABC ′,4AB′C is congruent to 4ABC.
(2) Prove that A is the midpoint of B′C ′, B is the midpoint

of A′C ′, and C is the midpoint of A′B′.
(3) Prove that altitudes of 4ABC are the same as perpen-

dicular bisectors of sides of 4A′B′C ′.

BC

A

A

CB

Since, by Corollary 8.6, perpendicular bisectors of 4A′B′C ′ meet at a point, we see that
altitudes of 4ABC meet at a point. �

8.5. Tangent lines. A line that meets a circle in exactly one point is a tangent line to the
circle at the point of intersection. Our first problem is to show that there is one and only
one tangent line at each point of a circle.

Proposition 8.8. Let A be a point on the circle Σ, and let k be the line through A perpen-
dicular to the radius at A. Then k is tangent to Σ.

Proof. There are only three possibilities for k: it either is disjoint from Σ, which cannot be,
as A is a common point; or it is tangent to Σ at A; or it meets Σ at another point B. If k
meets Σ at B then OAB is a triangle, where ∠A is a right angle. Since OA and OB are both
radii, |OA| = |OB|. Hence 4OAB is isosceles. Hence m∠A = m∠B. We have constructed
a triangle with two right angles, which cannot be; i.e., we have reached a contradiction. �

Proposition 8.9. If k is a line tangent to the circle Σ at the point A, then k is perpendicular
to the radius ending at A.
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Proof. We will prove the contrapositive: if k is a line passing through A, where k is not
perpendicular to the radius, then k is not tangent to Σ.

Draw the line segment m from O to k, where m is perpendicular
to k. Let B be the point of intersection of k and m. On k, mark off
the distance |AB| from B to some point C, on the other side of B
from A. Since OB is perpendicular to k, m∠OBA = m∠OBC. By
SAS, 4OBA ∼= 4OBC, and so |OC| = |OA|. Thus both A and C
lie on Σ, and k intersects Σ in two points. Thus, k is not tangent
to Σ.

O

A CB
k

�

Corollary 8.10. Let A be a point on the circle Σ. Then there is exactly one line through A
tangent to Σ.

Exercise 8.4: Prove this Corollary.

8.6. Inscribed circles.

A circle Σ is inscribed in 4ABC if all three sides of the triangle are
tangent to Σ. One can view the inscribed circle as being the largest circle
whose interior lies entirely inside the triangle. (Note that it is not quite
correct to say that the circle lies entirely inside the triangle, because the
triangle and the circle share three points.)

We start the search for the inscribed circle with the question of what it means for the
circle to have two tangents which are not parallel.

Proposition 8.11. Let A be a point outside the circle Σ, and let k1 and k2 be tangents to
Σ passing through A. Then the line segment OA bisects the angle between k1 and k2.

Proof. Let Bi be the point where ki is tangent to Σ, for i = 1, 2. Draw the lines OB1 and
OB2. Observe that |OB1| = |OB2| = r, and that, since radii are perpendicular to tangents,

∠OB1A = ∠OB2A = π/2. By Pythagoras theorem, |AB1| =
√
|AB1|2 + r2 = |AB2.

By SSS, 4OB1A ∼= 4OB2A. Hence m∠OAB1 = m∠OAB2. �

From the above, we see that if there is an inscribed circle for 4ABC, then its center lies
at the point of intersection of the three angle bisectors, and its radius is the distance from
this point to the three sides. Hence we have proven the following.

Corollary 8.12 (Inscribed circles are unique). Every triangle has at most one inscribed
circle.

Theorem 8.13. Every triangle has an inscribed circle.

Proof.
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Let G be the point of intersection of the angle bisectors from A
and B in 4ABC. Let D be the point where the perpendicular
from G meets AB; let E be the point where the perpendicular
from G meets BC; and let F be the point where the perpendic-
ular from G meets AC.
Observe that, by AAS, 4ADG ∼= 4AFG. Similarly, 4BDG ∼=
4BEG and 4CEG ∼= 4CFG.

D

B

E

C

A

G

F

We have shown that the perpendiculars from G to the three sides all have equal length;
call this length r. Then, by Proposition 8.8, the circle centered at G of radius r is tangent
to the three sides of 4ABC exactly at the points D, E and F . �

Corollary 8.14. The three angle bisectors of a triangle meet at a point; this point is the
center of the inscribed circle.

Exercise 8.5: Give a proof of this corollary using the above theorem.

Exercise 8.6: Let A and B be points on the circle Σ. Let k be the line tangent to Σ at A
and let m be the line tangent to Σ at B. Prove that if k and m are parallel, then the line
segment AB is a diameter of Σ.

8.7. Central angles. Let Σ be a circle with center O, and let A, B be points on Σ. Then
the angle ∠AOB is called central angle. It turns out that the angles in a triangel ABC
inscribed in Σ are closely related with the corresponding central angles.

Proposition 8.15. Let Σ be a circle with center O, and let A, B, C be distinct points on Σ
such that AC is a diameter of Σ. Then m∠ACB = 1

2
m∠AOB

Proof. Consider the triangle BOC. Since |BO| = |OC|, this tri-
angle is isosceles. Thus, by Theorem 5.2(base angles are equal),
∠OBC = ∠OCB. Now consider ∠AOC. This is an external
angle of 4OBC, so by Exercise 6.4, it is equal to the sum of
two other angles: ∠AOC = ∠OBC + ∠OCB = 2∠OCB =
2∠ACB. �

A

B

C
O

α2α

α

The next step is to generalize it to the case when AC is not necessarily a diameter of Σ.
however, one must be careful when doing this. The following “theorem” seems a natural
generalization — however, it is not correct as stated. We give it here as an example of why
it is dangerous to base your proof on things which are “obvious from the figure”.
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Theorem 8.16 (INCORRECT). Let Σ be a circle with center
O, and let A, B, C be distinct points on Σ. Then m∠ACB =
1
2
m∠AOB.

“Proof”. Let D be the point on Σ such that CD is a diameter
(it is easy to show that such a point exists and is unique). Then
m∠ACB = m∠ACD + m∠DCB. Since CD is a diameter, we
can apply Proposition 8.15 to triangles 4ACD,4DCB which
gives ∠ACD = 1

2
∠AOD,m∠DCB = 1

2
m∠DOB, so

m∠ACB =
1

2
(m∠AOD + m∠DOB) =

1

2
m∠AOB

�

C
α2α

A

B

O
2β βD

So what is wrong with this theorem and this proof? Here is one problem: if we choose
A, B, C so that ∠ACB > π/2 as shown below, then according to this theorem, ∠AOB =
2∠ACB > π. But by Protractor axiom, the measure of any angle is ≤ π. So we get a
contradiction which shows that this theorem can not be correct as stated.

CD

B

A

O

Closer look also shows what is the likely origin of this trou-
ble. Namely, looking at this example it seems that the for-
mula m∠ACB = 1

2
m∠AOB would be true if we gave dif-

ferent interpretation of m∠AOB: if instead of measuring the
smaller of two angles formed by rays OA and OB (which is
the definition we used in Protractor axiom and elsewhere), we
measured that of the two angles which contains the point D.
This also shows the gap in the proof: the proof assumes that
m∠AOD + m∠DOB = m∠AOB; however, we didn’t explain
why it is so. It could be justified by referring to Protractor ax-

iom — but only if the ray
−→
OD is inside angle ∠AOB. As the

two figures above show, this is not always true.
As mentioned above, the statement of the theorem can be corrected. There are several

ways of doing so. One possibility is to change the way we measure angles, so instead of saying
“for every angle we have its measure”, we would say “for every sector there is a measure”,
with a sector being one of two regions of the plane bounded by the angle. Then replacing
in Theorem 8.16 m∠AOB by “measure of the sector bounded by ∠AOB which does not
contain point C” would give a correct theorem.

This can be done (and, in fact, this is the way it is done in most elementary geometry
books), but it would require some work — and it is too late to do so now, as we have already
extensively used the notion of anlge and Protractor axiom. Therefore, instead we give the
following reformulation of Theorem 8.16.

Theorem 8.17. Let Σ be a circle with center O, and let A, B, C be distinct points on Σ.
Then

m∠AOB =

{
2m∠ACB, if m∠ACB ≤ π/2

2π − 2m∠ACB, if m∠ACB > π/2
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9. Coordinates

In this section, we show how one can relate this axiomatic approach to Euclidean geometry
with the familiar coordinate one, in which we use a coordinate system to describe a point by
a pair of real numbers — its x and y coordinates. Please note that this is a relatively new
approach to geometry: it was introduced Descartes in 17th century — less than 4 centuries
ago (for comparison, Euclid’s Elements were written 23 centuries ago). We will discuss
advantages and disadvantages of this approach later.

9.1. Coordinate system. A coordinate system is an identification f : P → R2, where P is
the plane (i.e., the set of all point considered in Euclidean geometry) and R2 is the set of
all pairs (x, y) of real numbers. This naturally extends the notion of coordinate system on a
line, discussed in Ruler Axiom.

As with a line, there is more than one coordinate system on the plane. In order to define
a coordinate system, we need to specify the origin and coordinate axes. Here are the precise
definitions.

Definition 9.1. A coordinate system on the plane is the following collection of data:

• A point O (called the origin).

• Rays
−→
OA and

−→
OB such that

←→
OA⊥

←→
OB.

The lines OA and OB are usually called x-axis and y-axis respectively. Please note that
the definition of coordinate system asks not just for the lines but for the rays — this is
needed to determine the direction on each of the axes.

Now comes the promised result about identifying the set of all points with R2.

Theorem 9.1. Every coordinate system O,
−→
OA,

−→
OB defines an identification of the set of

all points with R2.

Proof. To define an identification, we need:

• Describe a map f : {points} → R2

• Show that conversely, for each (x, y) ∈ R2, there is a unique point P corresponding
to it (i.e., such that f(P ) = (x, y)).

To define f , note first that by Ruler Axiom, choice of O and a ray
−→
OA defines a coordinate

system fx :
←→
OA→ R such that fx(O) = 0, fx(A) > 0. Similarly, ray

−→
OB defines a coordinate

system fy :
−→
OB→ R. This allows us to label points on both axes by real numbers.

Now let P a point. Drop perpendiculars PPx, PPy from P to
←→
OA (x-axis) and

←→
OB (y-axis) (such perpendiculars exist and are

unique by Theorem 6.4). So we have two “projections” of P on
the axes. Next, define the x and y coordinates x = fx(Px), y =
fy(Py) by using the coordinate systems fx on the x-axis and fy

on the y-axis. Thus, we have defined a map which for a given
point P gives pair of real numbers x and y. We will say that
x, y are coordinates of P , or that P has coordinates x, y.

O

P

P

P

x

y

A

B
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Conversely, let x, y be real numbers. To show that there is a unique point P with coordi-
nates x, y, let Px be the point on the x-axis such that fx(Px) = x (such a point exists and is
unique by the Ruler Axiom); similarly, let Py be the point on y-axis such that fy(Py) = y.
Let l be the perpendicular to x-axis through Px (exists by Protractor Axiom), and m the
perpendicular to y-axis through Py. Let P be the intersection point of l and m. Then we
claim that P has coordinates (x, y) we started with, and moreover, P is the only point that
has these coordinates. The proofs of these two statements is left as an easy exercise to the
reader. �

As usual, we will write P = (x, y) to say “point P has coordinates (x, y)”. We will also
commonly use word “horizontal” for a line which is parallel to x-axis and “vertical” for a
line which is parallel to y-axis.

Exercise 9.1: Show that any horizontal line is perpendicular to any vertical line.

Exercise 9.2: Show that two distinct points A, B have the same coordinate iff
←→
AB is a

vertical line.

9.2. Equation of a line. In this section we will show that any line l not parallel to y
axis can be described by an equation y = mx + b. This is not quite easy and requires
some preparation. Throughout this section, we assume that we have chosen some coordinate
system on the plane.

Exercise 9.3: Let A = (x1, y1), B = (x2, y2) be distinct points. Prove that
←→
AB is parallel

to the y-axis iff x1 = x2.

Definition 9.2. Let A = (x1, y1), B = (x2, y2) be points such that x1 6= x2. Then we define
slope of segment AB by

m(AB) =
y2 − y1

x2 − x1

Theorem 9.2. Let l be a line which is not parallel to the y-axis, and let A, B, A′, B′ be
points on l such that A 6= B, A′ 6= B′. Then the slopes of segments AB and A′B′ are equal:
m(AB) = m(A′B′).

Proof.

O

A

B

C

A
B

C

l m
n

Let m be the line through A parallel to x-axis (exists and
is unique by Parallel lines axiom), and n the line through
B parallel to y-axis. By Exercise 9.1, m ⊥ n. Let C be
the intersection point of m,n. Then 4ABC is the right
triangle: m∠C = π/2, and |AC| = x2 − x1, |BC| = y2 − y1

where A = (x1, y1), B = (x2, y2).
Similarly, let m′ be the line through A′ parallel to x-axis,
and n′ the line through B′ parallel to y-axis, and let C ′ be
the intersection point of m′, n′. Then 4A′B′C ′ is the right
triangle: m∠C ′ = π/2, and |A′C ′| = x′2−x′1, |B′C ′| = y′2−y′1
where A′ = (x′1, y

′
1), B

′ = (x′2, y
′
2).
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Using Theorem 6.2, we see that m∠A = m∠A′, m∠B = m∠B′. Thus, 4ABC ∼ 4A′B′C ′

by AAA. Thus, by definition of similar triangles, |A
′C′|
|AC| = |B′C′|

|BC| . Denoting this ratio by k, we

get x′2 − x′1 = k(x2 − x1), y
′
2 − y′1 = k(y2 − y1), so

y′2 − y′1
x′2 − x′1

=
y2 − y1

x2 − x1

�

Exercise 9.4: This proof actually has the same deficiencies as our (incorrect) proof of the
theorem about central angles: it uses some information about relative positions of points on
the line l which is true in the figure shown but was not proved (and, in fact, may be false)
in general. Can you identify what information it uses and in which step?

Fortunately, the theorem is still true: even though the proof above has gaps, it can be
fixed. Can you do this?

This theorem implies that for a line l not parallel to y-axis, we can define its slope m(l)
as the slope of any segment on this line. According to the theorem above, the result doesn’t
depend on which segment we used.

Now we are ready to prove the main result about equation of a line.

Theorem 9.3. Let l be a line with slope m which contains point P = (x0, y0). Then a point
A = (x, y) lies on l iff x, y satisfy the equation

y − y0 = m(x− x0)

Proof. First, we prove that if A ∈ l then x, y satisfy this equation. Indeed, by Theorem 9.2
and the definition of the slope of a line, the slope of AP must be equal to the slope of l, so
y−y0

x−x0
= m. This is equivalent to the equation above.

Conversely, assume that x, y satisfy y − y0 = m(x− x0). We need to prove that A ∈ l.
Consider the line going through A and parallel to y-axis. Let A′ = (x′, y′) be the point of

intersection of this line with l. Since
←→
AA′ is parallel to y-axis, points A and A′ have the same

x-coordinate. Thus, x = x′. Next, by previous argument, y′− y0 = m(x′− x0) = m(x− x0).
Thus, y′ = m(x− x0) + y0 = y. So A = A′. Since by construction ‘A′ ∈ l, this gives A ∈ l.

�

Of course, writing the equation of a line is only the beginning. We could continue in this
vein and develop equations of a circle, develop trigonometry and so on. However, as we do
not have time to cover all this (and most of this you have already seen in other courses), we
stop here.

9.3. Advantages and disadvantages of coordinate method. One of the natural
questions people ask after seeing the coordinate method is this: why don’t we just forget
axiomatic approach to Euclidean geometry and start by defining the plane to be the set R2,
let lines be defined by equations like y = mx+b, and so on? In fact, some mathematicians (for
example, French mathematician J. Dieudonne) have suggested this approach to the study of
geometry. However, this has some serious drawbacks. For example, consider Corollary 8.14:
three angle bisectors in a triangle intersect at a single point. The proof given in these
notes (and going back to Euclid) is rather nice and is based essentially on the fact that
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there is a unique inscribed circle. However, proving the same theorem using the coordinate
approach, by writing equations of the three angle bisectors and then showing that these three
equations have a common solution, while not impossible, results in 2 pages of extremely
messy computations. So the coordinate approach, while powerful, is not a replacement for a
more traditional approach: the best way would to to combine them. By the way, Descartes
himself was fully aware of the drawbacks of the coordinate approach and never suggested
that it is a is a magical cure-all.

And for the purposes of MAT 200, we certainly want the axiomatic approach: the whole
point of this part of the course was to show you logic in action, proving results starting
with the axioms and advancing to more and more complicated ones. Axiomatic approach to
Euclidean geometry provides a very good example of this.



Math 200 Lecture 1 (Tue/ Thur) Exam II Spring 2007 Scott Simon

Axioms and Definitions for Geometry

UNDEFINED TERMS . The plane is our universe of discourse, and points and lines are
subsets of the plane. A line is a set of points with properties as defined by the axioms.
The distance between any two points A and B is a number denoted by |AB|, again with
properties as specified by the axioms.

INCIDENCE AXIOM.

1. For any two distinct points, there is a unique line that contains these two points.

2. Every line contains at least two distinct points.

3. For any line, there exists a point not on this line.

DEFINITION. Two lines l and m are said to be transverse if they are distinct (l = m) and
have at least one point in common. Two lines are parallel if they are not transverse.

THE PARALLEL AXIOM. For any line l and a point P not on l, there exists a unique line
containing P and parallel to l.

THE RULER AXIOM. Let l be any line. Then there is a bijection f : l → R such that, for
any two points A, B on l, the distance between A and B, |AB|, is given by |f(A) − f(B)|.
This bijection f is called a coordinate system on l.

DEFINITION. If A, B, and C are points on a line l, we say B is between A and C if there
is a coordinate system f on l for whichf(A) < f(B) < f(C). The set of all points on l that
are between between A and C is called the line segment AB.

DEFINITION. Let A, B and C be three distinct points on a line l. We say that A and C
are on opposite sides of B if B is between A and C . If A and B are not on opposite sides of
C , we say A and B are on the same side of C .

DEFINITION. If l is a line and V and A are distinct points on l, we define the ray
−→
V A to

be all of the points on l that are on the same side of V as A.
BINOMIAL THEOREM:

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

1
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You may write answers in terms of factorials and exponents.

1. Suppose that a computer password is 6 letters long and it contains only lower-case letters
(from the 26-letter alphabet).

(a) (5 pts) Find a formula for how many different such passwords there are. Note that
the password can be any combination of letters (such as abacad).

(b) (5 pts) How many possibilities are there if no letter is repeated?

2. A deck of cards contains 52 distinct cards.

(a) ( 5 pts) How many different 7-card hands are there (i.e. how many different ways
are there to draw 7 cards from the deck if the order doesnt matter)?

(b) (5 pts) Suppose that there are a total of 4 aces in the deck. How many different
7-card hands are there with exactly 2 aces?

3. (5 pts) Write the number 0.123123123 . . . as a fraction.

4. (10 pts) For each n ∈ Z+, let Sn be a denumberable set. Suppose that for each n 6= m,
Sn ∩ Sm = ∅. Show that ⋃

n∈Z+

Sn

is also denumerable.

5. (5 pts) Suppose that f : l → R is a coordinate system and c ∈ R. Show that g(A) =
c− f(A) is a coordinate system.

6. For each of the interpretations of the terms point, line, and distance given below, deter-
mine if they are consistent with the indicated axioms.

(a) Points are elements of the set {(x, y) ∈ R2|y > 0}. The distance between two points
(x1, y1) and (x2, y2) is given by√

(x1 − x2)2 +

(
ln

(
y1

y2

))2

.

Lines are just intersections between the usual lines in R2 and the plane defined
above.

i. (3 pts) Prove that the incidence axiom is satisfied or show that it isn’t.

ii. (3 pts) Prove that the parallel axiom is satisfied or show that it isn’t.

(b) Points are real numbers, and lines are integers. The distance between two real
numbers is the absolute value of their difference.

i. (3 pts) Prove that the incidence axiom is satisfied or show that it isn’t.

ii. (3 pts) Prove that the parallel axiom is satisfied or show that it isn’t.

iii. (3 pts) Prove that the ruler axiom is satisfied or show that it isn’t.

2
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Axioms and Definitions for Geometry

UNDEFINED TERMS . The plane is our universe of discourse, and points and lines are
subsets of the plane. A line is a set of points with properties as defined by the axioms.
The distance between any two points A and B is a number denoted by |AB|, again with
properties as specified by the axioms.

INCIDENCE AXIOM.

1. For any two distinct points, there is a unique line that contains these two points.

2. Every line contains at least two distinct points.

3. For any line, there exists a point not on this line.

DEFINITION. Two lines l and m are said to be transverse if they are distinct (l = m) and
have at least one point in common. Two lines are parallel if they are not transverse.

THE PARALLEL AXIOM. For any line l and a point P not on l, there exists a unique line
containing P and parallel to l.

THE RULER AXIOM. Let l be any line. Then there is a bijection f : l → R such that, for
any two points A, B on l, the distance between A and B, |AB|, is given by |f(A) − f(B)|.
This bijection f is called a coordinate system on l.

DEFINITION. If A, B, and C are points on a line l, we say B is between A and C if there
is a coordinate system f on l for whichf(A) < f(B) < f(C). The set of all points on l that
are between between A and C is called the line segment AB.

DEFINITION. Let A, B and C be three distinct points on a line l. We say that A and C
are on opposite sides of B if B is between A and C . If A and B are not on opposite sides of
C , we say A and B are on the same side of C .

DEFINITION. If l is a line and V and A are distinct points on l, we define the ray
−→
V A to

be all of the points on l that are on the same side of V as A.
BINOMIAL THEOREM:

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

1
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You may write answers in terms of factorials and exponents.

1. Suppose I have 10 buckets (each one is a different color) and 6 marbles (each one is a
different color).

(a) (5 pts) How many different ways are there to put the marbles in the buckets (as-
suming I don’t care what order I do it in)?

(b) (5 pts) How many different ways are there to put the marbles in if the order still
doesn’t matter, but now at most one marble can go into any bucket?

2. Suppose that there are 7 lunchboxes, 7 sandwiches, 5 apples, and 4 thermoses of milk.
We wish to put together 7 lunches so that none contain more than one sandwich, apple,
or thermos.

(a) (5 pts) How many different possible ways are there to pack the lunchboxes if each
lunchbox has a child’s name on it? That is, the outcome is different if the same set
of lunches is put into different lunchboxes.

(b) (5 pts) How many different possible ways are there to pack the lunches if all of the
lunchboxes are identical (i.e. it doesn’t matter who gets which lunchbox)?

3. (5 pts) Write the number 0.123123123 . . . as a fraction.

4. (a) (5 pts) Find a bijection between the set of all positive integers and the set of all
numbers of the form n/2k for some integers n and k.

(b) (5 pts) Find a bijection from [0, 1] to a proper subset of itself. You may use part (a)
even if you do not solve it.

5. (5 pts) Let P, Q,R be distinct points such that P lies on the line
←→
QR. Show that R lies

on the line
←→
PQ.

6. For each of the interpretations of the terms point, line, and distance given below, deter-
mine if they are consistent with the indicated axioms.

(a) Points are elements of the set R2, and lines are the usual lines or circles. The distance
is the usual Euclidean distance.

i. (3 pts) Prove that the incidence axiom is satisfied or show that it isn’t.

ii. (3 pts) Prove that the parallel axiom is satisfied or show that it isn’t.

(b) Points are elements of the set {(x, y) ∈ R2|x2 + y2 < 1} and lines are line segments
whose endpoints lie on the unit circle. The distance between (x1, y1) and (x2, y2) is
given by √

(x1 − x2)2 + (y1 − y2)2

(1− x2
1 − y2

1)(1− x2
2 − y2

2)
.

i. (3 pts) Prove that the incidence axiom is satisfied or show that it isn’t.

ii. (3 pts) Prove that the parallel axiom is satisfied or show that it isn’t.

2
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Name: ID:

Question: 1 2 3 4 5 6 7 8 Extra Total

Points: 10 12 10 10 10 10 10 10 0 82

Score:

There are 9 problems in this exam. Make sure that you have them all.

Do all of your work in this exam booklet, and cross out any work that the grader should
ignore. You may use the backs of pages, but indicate what is where if you expect someone
to look at it. Books and discussions with friends are not permitted. You may use one
sheet of handwritten notes, provided you turn it in with the exam. A set of enchanted
notes (like Tom Riddle’s diary in Harry Potter and the Chamber of Secrets) is permitted, but
frowned upon because their use tends to have unforseen consequences.

You have two hours or so to complete this exam.



1. (a) 5 points You probably have seen the following statement on a truck

If you can’t see my mirrors, then I can’t see you.

Write a logically equivalent statement that does not use any negatives.

(b) 5 points A subset U of R is called an open set when the following property holds:

For each point x ∈ U , there is a δ > 0 so that for every z, if |x − z| < δ

then z ∈ U .

Without using any negatives except 6∈, write a definition of what it means for U

not to be an open set. You may write this symbolically or in words, as you prefer,
but write it carefully and correctly.
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2. You have 5 rabbits named Flippy, Floppy, Flappy, Floopy, and George; two turtles
named Terrence and Tabitha; and three foxes named Xavier, Xam, and Xue. You can
tell all of your animals apart. You want to take three of your animals to visit your
sick aunt Bertha (she just loves animals), but you only have one cage– the cage holds
exactly three animals.

(a) 4 points How many different trios of animals could you pick? (The animals
needn’t be the same species, but they might be.) Justify your answer.

(b) 4 points If you put a fox in a cage with a rabbit, the fox will eat the rabbit. The
rabbits and the turtles just ignore one another, and the turtles and the foxes get
along famously. How many bad choices of animals could you make (that is, how
many trios contain at least one fox and at least one rabbit)? Again, justify your
answer.

(c) 4 points Finally, how many different sets of three animals can you put in your
cage safely, assuming you can’t put foxes and rabbits together?
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3. 10 points Prove that there is no rational number whose square is 8.
You may assume that for any integer a, if a2 is even, then a is also even.
Be careful; there is a minor difference with the proof for

√
2.
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4. 10 points Prove that for all integers n > 1,

1 + 4 + 7 + . . . + (3n − 2) =
n(3n − 1)

2

(You might find induction helpful.)
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5. 10 points Let 4ABC be a triangle. Prove that m∠A = m∠B = m∠C if and only if
|AB| = |BC| = |CD|.
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6. 10 points What is the last digit of 3100?
Don’t try to multiply this out: the answer has 47 digits.
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7. Consider the following axioms describing a nonempty set S of people.

DEFINITION. A club is a nonempty set of people. If a person p is a member of club
C, we write p ∈ C. Clubs are determined by their members; that is, two clubs with
exactly the same members are the same club.

AXIOM 1. Every person in S is the member of at least one club.

AXIOM 2. For every club C, there is exactly one club C which shares no members
with it. This club is called the nemesis of C.

AXIOM 3. For each pair of people, there is exactly one club to which they both belong.

(a) 5 points Show that each person is a member of at least two clubs.

(b) 5 points Show that there are at least four people in S.
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8. (a) 5 points Let f : R → R be given by f(x) =

{

x2 if x ≥ 0

−x2 if x < 0
.

Is f a bijection? Justify your answer.

(b) 5 points Let g : Z → Z be given by g(x) =

{

x2 if x ≥ 0

−x2 if x < 0
.

Is g a bijection? Justify your answer.
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Extra Credit (up to 10 points)
There is a statement in each of the four boxes, but three of the statements are false,
and one is true. Exactly one of the boxes is worth 4 points; the others are worth no
points. If you place an X in the box worth four points, you may have them. If you put
it in a worthless box, you get nothing. If you put an X in more than one box, I will
deduct 10 points, so don’t do that.

Box A
This box is worth
no points

Box B
Box C is worth
4 points

Box C
Box D is worth
4 points

Box D
The statement in
Box C is false

For 6 additional points, you must give a proof that the box you picked was the one
worth points, and that there is only one such box.
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Approximate Schedule for MAT200, Fall 2006

Week Topics Homework

 9/4

Administrivia. 
1 The Language of
 Mathematics 
2 Implications 
3 Proofs

 No real homework this week.

 9/11

3 Proofs (continuted) 
4 Proof by
 Contradiction 
5 Proof by Induction

HW 1 (due 9/19 or 9/20): Prove that if n is an
 integer, 2n+1 is odd.
 On pages 53-54: problems 4 through 11.
 Text problems 2.1(p.19), 2.2(p.20), 3.2 and
 3.3(p.29), 4.2 and 4.3(p.37) should be done, but
 won't be graded (since the answers are in the
 back).

 9/18

9/19: last day to add or drop
 without a W
5 Induction
 (continued)
6 The Language of
 Set Theory

HW 2 (due 9/26 or 9/27): Ungraded problems
 (answers in back): 5.1 through 5.7 (p. 51-2)
 On pages 54-56: problems 12, 13, 14, 16, 17,
 18, 20, 21, 25.
 To help you study, here is one student's
 homework, in PDF or Word. I had some issues
 with some of the fonts, and would do a few of
 the problems slightly differently.

 9/25 7 Quantifiers
8 Functions

HW 3 (due 10/3 or 10/4): Ungraded problems
 (answers in back): 6.4 through 6.7 (p. 72-3), 7.1,
 7.5 through 7.8 (p. 86-7). 
 On pages 115-117: problems 3, 4, 5, 8, 11, 12.

 10/2

No class 10/2 (Yom Kippur)
9 Injections,
 Surjections, and
 Bijections.

HW 4 (due 10/10 or 10/11): Ungraded problems
 (answers in back): 8.1, 8.3, 8.5 (p.99), 9.1, 9.2,
 9.4 (p. 113-4). 
 On pages 117-119: problems 13, 15, 16, 18, 19,
 20. 
Here are the solutions.

 10/9

10 Counting. 
First midterm on 10/12
 (lec 1) or 10/13(lec 2).
 Covers through ch.9. 

 No homework due this week. For your
 entertainment, here is a copy of the midterm
 for lecture 2, as well as the solutions to the
 midterm.

 10/16

10 Counting
 (continued) 
11 Properties of Finite

HW 5 (due 10/24 or 10/25): Ungraded problems
 (answers in back): 10.2, 10.3 (p.132), 11.2, 11.4
 (p. 143), 
 On pages 182-184: problems 1, 3, 5, 6, 10, 11,

http://www.math.stonybrook.edu/~scott/mat200.fall06/syllabus/
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/JMmat200hw2.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/JMmat200hw2.doc
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW4sols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/exam1.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/exam1.pdf


 Sets.  14. 
Here are the solutions.

 10/23

11 Properties of Finite
 Sets (continued)
12 Counting Functions
 and Subsets.

HW 6 (due 10/31 or 11/1): Ungraded problems
 (answers in back): 12.1 through 12.5. 
 On page 185: problems 17 and 18. 
Here are the solutions (and an alternative
 writeup).

 10/30
13 Number Systems.
14 Counting Infinite
 Sets. 

HW 7   Ungraded problems (answers in back):
 13.4, 14.1, 14.2, and 14.3. 
 On page 186: problems 23, 24, 25, 26. 
Here are the solutions.

 11/6

11/7: Last day to drop with
 W
14 Counting Infinite
 Sets (continued). 
 Geometry Notes: 1.
 Introduction through
 3. Ruler Axiom.

HW 8 (due 11/16 or 11/17): Geometry notes:
 Exercises 2.3, 2.6, 3.1, 3.2, and 3.3. 
Here are the solutions.

 11/13

 Continue with
 geometry: 3. Ruler
 Axiom and 4.
 Protractor Axiom.

 No homework due this week.

 11/20

Second Midterm on
 11/20 (lec 2) or 11/21
 (lec 1). No Classes 11/23
 or 11/24 (Thanksgiving)

HW 9 Geometry notes: Exercises 4.3, 4.4, 4.7,
 and 4.8. Here are the solutions. 
 For your entertainment, here is a copy of the
 midterm for lecture 2, as well as the solutions
 to the midterm.

 11/27

 Geometry notes: 5.
 Triangles, 6. The
 Parallel Axiom
 Revisited, and 7.
 Similarity.

HW 10 Geometry notes: Exercises 5.2, 5.5, 5.6,
 5.10, 6.1, 6.3, 7.10. 
Here are the solutions.

 12/4

19 Modular Arithmetic.
 
21 Congruence
 Classes.

HW 11 Ungraded problems (answers in back):
 TBA. 
 On pages 271-273: problems 1, 3, 7, 13, 17, 18.
 Here are the solutions.

 12/11

21 Congruence
 Classes (continued). 
22 Partitions and
 Equivalence
 Relations.
 Some reviewing 
last class 12/15

  

Thursday, Dec 21, 2pm (lecture 1)
 Wednesday, Dec 20 8am(lecture

Final exam
 Information for Lecture 1

http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW5-solutions.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW6sols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW6-altsols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW6-altsols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW7sols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.1
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.1
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.3
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW8-sols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.3
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.3
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.4
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.4
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW9sols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.5
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.5
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.6
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.6
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.6
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.7
http://www.math.stonybrook.edu/~scott/mat200.fall06/Geometry.pdf#section.7
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW10sols.pdf
http://www.math.stonybrook.edu/~scott/mat200.fall06/HW/HW11sols.pdf
http://www.math.stonybrook.edu/~ratatosk/mat200.html


 2)  (Waddington).

Return to class main page
 Page last modified on Sunday, 17 December 2006 at 05:18

 PM.

http://www.math.stonybrook.edu/~ratatosk/mat200.html
http://www.math.stonybrook.edu/~scott/mat200.fall06/


MATH 200, Lec 2 Solutions to Midterm 1
1. (a) 4 points Write a statement that is logically equivalent to the one below, but uses

no negatives.
If you didn’t do the homework, then you won’t pass the exam.

Solution: This is an implication of the form not P =⇒ not Q, where the
statement P is “You did the homework”, and the statement Q is “you pass
the exam”. The contrapositive (which is always an equivalent statement) of
not P =⇒ not Q is Q =⇒ P , that is,

If you pass the exam, then you did the homework.

Note that the statement “If you did the homework, you will pass the exam.” is
not equivalent to the original. Rather, it is the converse.

(b) 4 points Write the negation of the statement below, using no negatives:

For every positive real number ε and for every integer x, there is an integer y so that

0 ≤ x

y
and

x

y
< ε

Solution: Some people found this easier to do by first writing the original sym-
bolically, which is

∀ε ∈ R+ ∀x ∈ Z,∃y ∈ Z, 0 ≤ x

y
and

x

y
< ε

To negate such a statement, we exchange the quantifiers ∀ and ∃ and negate
what follows, giving us

∃ε ∈ R+ ∃x ∈ Z,∀y ∈ Z, not
(

0 ≤ x

y
and

x

y
< ε

)
Now we write the negation of the innermost part. Recall that not(A and B) is
(not A) or (not B), so we have

∃ε ∈ R+ ∃x ∈ Z,∀y ∈ Z, 0 >
x

y
or

x

y
≥ ε

In words, we would say this as
There is a positive real number ε and an integer x, so that for any integer y we have
either

x

y
< 0 or

x

y
≥ ε
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2. 8 points Prove that for any integer n, if n2 is odd, then n is odd.

Solution: It is most straightforward to prove the contrapositive, that is, to show that
if n is even, then n2 is also even.

If n is even, then there is an integer q so that n = 2q. Then n2 = (2q)2 = 2(2q2). We
have shown there is an integer m (namely, m = 2q2) so that n2 = 2m, so n2 is even,
as desired.

3. 6 points Prove that for any sets A, B, and C, (A ∩ C)−B = (A−B) ∩ C

Solution: This can be done in several essentially equivalent ways. The simplest is
to note that for any sets S and R, S −R = S ∩Rc (where Rc is the complement of R.
Then we have

(A ∩ C)−B = (A ∩ C) ∩Bc = A ∩Bc ∩ C = (A−B) ∩ C.

Another way is to take an element of one set and argue that it lies in the other, and
vice-versa. Even though it is essentially equivalent, I’ll do that too:

Suppose x ∈ (A ∩ C)− B. This means that x ∈ A ∩ C and x 6∈ B. Since x ∈ (A ∩ C),
we have x ∈ A and x ∈ C. Reordering, we have x ∈ A and x 6∈ B and x ∈ C. Putting
these together gives us x ∈ (A−B)∩C, which shows (A∩C)−B ⊆ (A−B)∩C. The
argument above is completely reversible, so we also know (A−B)∩C ⊆ (A∩C)−B,
giving the desired result.

Many students chose to do this via a truth table with 8 lines:

x ∈ A x ∈ B x ∈ C x ∈ A ∩ C x ∈ (A ∩ C)−B x ∈ A−B x ∈ (A−B) ∩ C
T T T T F F F
T T F F F F F
T F T T T T T
T F F F F T F
F T T F F F F
F T F F F F F
F F T F F F F
F F F F F F F

Note that values for membership in both sets agree; specifically, both are false except
in the third line of the table.

Finally, a Venn diagram would be acceptable, provided that the regions A ∩ C and
A−B are indicated as well as (A∩C)−B and (A−B)∩C (the last two are of course
the same).
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4. 8 points Prove that for any positive integer n, 4n +5 is divisible by 3. You might find

induction helpful. Recall that 4 = 3 + 1.

Solution: We’ll do this by induction.

For the base case, notice that if n = 1 we have 41 + 5 = 9, and 9 is divisible by 3.

Now we show that whenever 4k + 5 is divisible by 3, we must also have 4k+1 + 5
divisible by 3. To see this, notice that

4k+1 + 5 = (3 + 1) · 4k + 5 = 3 · 4k + (4k + 5)

Since 4k + 5 is divisible by 3 by our inductive hypothesis, there is some integer q so
that 4k + 5 = 3q. This means we have shown

4k+1 + 5 = 3 · 4k + 3q = 3(4k + q),

giving the desired conclusion.

5. Indicate whether each of the following statements is true or false, and justify your
answer with a proof.

(a) 3 points ∀x ∈ R,∃y ∈ R, x + y > 0 True False

Solution: True. We must show that for any given real number x, we can find a
y so that x + y is positive. Choosing y = 1− x works fine, since x + (1− x) = 1
and 1 > 0. Of course, there are plenty of other choices that work just as well.

(b) 3 points ∃y ∈ R,∀x ∈ R, x + y > 0 True False

Solution: False. Suppose there were such a value of y; let’s call it Q. Then it
would be true that for any choice of x ∈ R, x + Q is positive. If we take x = −Q,
this fails. So no such Q can exist.
An alternative is to prove the negation of the statement is true. That is, we can
show that ∀y ∈ R,∃x ∈ R, x + y ≤ 0. But this is almost the same as the answer
to the previous part: given any such y, let x = −1 − y, and then x + y = −1.
Since the negation of the statement is true, the original statement must be false.

(c) 3 points ∃x ∈ R,∀y ∈ R, xy ≥ 0 True False

Solution: True. Note that if x = 0, then no matter what y is, we have xy =
0 · y = 0, as desired.
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6. Let f : R → R2 be given by f(x) = (x + 1, x2 + 1).

(a) 4 points Is f surjective? Prove or disprove your answer.

Solution: f is not surjective.
If it were, then for any ordered pair (a, b) ∈ R2, we could find x so that f(x) =
(a, b). But there is no x so that f(x) = (1, 0). If there were, then since x + 1 = 1,
we’d have x = 0. But f(0) = (1, 1) 6= (1, 0).

(b) 4 points Is f injective? Prove or disprove your answer.

Solution: Yes, f is injective.
To see this, suppose f(x) = f(y). Then we have (x + 1, x2 + 1) = (y + 1, y2 + 1),
and in particular, x + 1 = y + 1. This means x = y, and so f is an injection.
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MATH 200, Lec 2 Second Midterm
November 20, 2006

Name: ID:

Question: 1 2 3 4 5 6 Total

Points: 10 10 10 5 10 10 55

Score:

There are 6 problems in this exam. The pages are printed on both sides. Make sure that
you have them all.

Do all of your work in this exam booklet, and cross out any work that the grader should
ignore. You may use the backs of pages, but indicate what is where if you expect someone
to look at it. Books, extra papers, and discussions with friends are not permitted. You
may contact the psychic friends network telepathically for help, but I don’t think Miss
Cleo or Dionne Warwick know much math.

You have an hour to complete this exam.



Axioms and Definitions for Geometry

UNDEFINED TERMS. The plane is our universe of discourse, and points and lines are
subsets of the plane. A line is a set of points with properties as defined by the axioms.
The distance between any two points A and B is a number denoted by |AB|, again with
properties as specified by the axioms.

INCIDENCE AXIOM.

1. For any two distinct points, there is a unique line that contains these two points.

2. Every line contains at least two distinct points.

3. For any line, there exists a point not on this line.

DEFINITION. Two lines l and m are said to be transverse if they are distinct (l 6= m) and
have at least one point in common. Two lines are parallel if they are not transverse.

THE PARALLEL AXIOM. For any line l and a point P not on l, there exists a unique line
containing P and parallel to l.

THE RULER AXIOM. Let l be any line. Then there is a bijection f : l → R such that, for
any two points A, B on l, the distance between A and B, |AB|, is given by |f(A)− f(B)|.
This bijection f is called a coordinate system on l.

DEFINITION. If A, B, and C are points on a line l, we say B is between A and C if there
is a coordinate system f on l for which f(A) < f(B) < f(C). The set of all points on l that
are between between A and C is called the line segment AB.

DEFINITION. Let A, B and C be three distinct points on a line l. We say that A and C are
on opposite sides of B if B is between A and C. If A and B are not on opposite sides of
C, we say A and B are on the same side of C.

DEFINITION. If l is a line and V and A are distinct points on l, we define the ray
−→
V A to be

all of the points on l that are on the same side of V as A.



1. 10 points Prove that there is no rational number whose square is 3.
You may assume that if a is an integer, a2 is divisible by 3 if and only if a is divisible by 3.
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2. (a) 5 points Show that if A and B are disjoint denumerable sets, then A ∪B is also
denumerable.

(b) 5 points Show that if X is an uncountable set and A ⊆ X is denumerable, then
the complement of A in X (that is, X − A) must be uncountable.
You may use the first part of this question, even if you couldn’t do it
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3. Three people decide to get tacos, and the tacqueria serves five kinds of tacos: beef,
chicken, pork, fish, and vegetarian. Each person orders exactly one taco.

(a) 5 points How many choices are possible if we record who selected which dish
(as the waiter should)?

(b) 5 points How many choices are possible if we forget who ordered which dish
(as the chef might)?
Be careful, this is more complicated than it may seem at first.
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4. 5 points What is the coefficent of x9 in the expansion of (x + 2)12?

5. 10 points Using only the definitions and axioms on the back of the cover sheet,
prove that if `, m, and n are lines so that ` is parallel to m, and m is parallel to n, then
` is parallel to n.
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6. For each of the interpretations of the terms point, line, and distance given below, de-
termine if they are consistent with the axioms given on the back of the cover sheet. If
the interpretation is not consistent, state all axioms it contradicts, and explain why.

D

C B

A (a) 5 points The plane contains exactly four points, A, B, C,

and D. There are six lines:
←→
AB,

←→
AC,

←→
AD,

←→
BC,

←→
BD, and

←→
CD, and the distances between points are given by |AD| =
|BD| = |CD| = 1 and |AB| = |BC| = |CA| = √

3.

(b) 5 points Points are elements (x, y) ∈ R2 with −1 < x < 1. A line is the set of

points which satisfy y = mx+b where m and b are real numbers (and−1 < x < 1);
in addition, the points which satisfy x = a where −1 < a < 1
are also lines. The distance between two points (x1, y1) and

(x2, y2) is given by

√(
x1

x2
1 − 1

− x2

x2
2 − 1

)2

+ (y1 − y2)
2
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MATH 200, Lec 2 Solutions to Midterm 2

1. 10 points Prove that there is no rational number whose square is 3.
You may assume that if a is an integer, a2 is divisible by 3 if and only if a is divisible by 3.

Solution: Suppose there was a rational number x whose square was divisible by 3.
Then there would be integers p and q with no common divisors so that x = p/q and
x2 = 3.

Thus
p2

q2
= 3, and so p2 = 3q2

which means p is divisible by 3, that is, there is an integer a so that p = 3a. Hence

3q2 = p2 = (3a)2 = 9a2,

and so q2 = 3a2. This means q is also divisible by 3, which contradicts our assump-
tion that p and q had no common divisors.

2. (a) 5 points Show that if A and B are disjoint denumerable sets, then A ∪B is also
denumerable.

Solution: Since A and B are denumerable, we have

A = {a1, a2, a3, . . .} B = {b1, b2, b3, . . .} ,

that is, we have bijections f : Z+ → A and g : Z+ → B. What we need is to give
a way to list A ∪B, that is, a bijection h : Z+ → A ∪B.
Note that we can’t just list the elements of A followed by those of B: since A is
infinite, we’ll never get to B. So we take the “one for you, one for me” strategy,
and alternate between the two sets, that is,

A ∪B = {a1, b1, a2, b2, a3, b3, . . .} .

More formally, we can write the bijection h : Z+ → A ∪B as

h(i) =

{
f

(
i+1
2

)
if i is odd

g
(

i
2

)
if i is even
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(b) 5 points Show that if X is an uncountable set and A ⊆ X is denumerable, then

the complement of A in X (that is, X − A) must be uncountable.
You may use the first part of this question, even if you couldn’t do it

Solution: We can do this by contradiction. If X −A is not uncountable, then it must
be countable, that is either finite or denumerable.

If X − A is denumerable, we have X expressed as the union of two denumerable
sets: X = A ∪ (X − A), and so by the first part of the problem, X is denumerable,
giving a contradiction.

Similarly, if X−A is finite, since A is denumerable, their union is again denumerable,
giving a contradition. (There is a theorem in the text to this effect. However, the
proof is simple: If |X − A| = n, then we can write X − A = {x1, x2, x3, . . . , xn}, and
so X = {x1, x2, x3, . . . , xn, a1, a2, a3, . . .}.)

3. Three people decide to get tacos, and the tacqueria serves five kinds of tacos: beef,
chicken, pork, fish, and vegetarian. Each person orders exactly one taco.

(a) 5 points How many choices are possible if we record who selected which dish
(as the waiter should)?

Solution: Each person can choose one of five types of taco, so there are 5 ·5 ·5 =
53 = 125 possible choices for all three.

(b) 5 points How many choices are possible if we forget who ordered which dish
(as the chef might)?
Be careful, this is more complicated than it may seem at first.

Solution: Here there is a slight complication since more than one person might
order the same type of taco. We just count the three cases separately.

• First, if all three get the same type of taco, there are 5 possibilities.

• If two get the same type of taco, and one gets something else, we have 5
choices for the two that are the same, and 4 choices remain for the different
one. This gives us 20 possibilities.

• Finally, if all three get different types, this means we have
(
5
3

)
= 10 possi-

bilities.

Altogether, this gives us 5 + 20 + 10 = 35 different orders from the chef’s point
of view.
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4. 5 points What is the coefficent of x9 in the expansion of (x + 2)12?

Solution: We apply the binomial theorem, which tells us that the term involving x9

looks like (
12

9

)
x923 = 8

12!

9!3!
x9 = 8 · 220x9 = 1760x9

so the coefficient of x9 is 1760.

5. 10 points Using only the definitions and axioms on the back of the cover sheet,
prove that if `, m, and n are lines so that ` is parallel to m, and m is parallel to n, then
` is parallel to n.

Solution: If ` = m, the result follows immediately, since ` ‖ m.

Now suppose ` 6= m, so ` and m have no points in common. Either ` and n have
no points in common (in which case we are done, since then they are parallel), or
they share at least one point. Call this point P . Since ` and m are disjoint, P is not
on m, and so by the parallel axiom there is a unique line which is parallel to m and
passes through P . Since both ` and n are parallel to m and pass through P , the only
possibility is that they are equal. By the definition of parallel, if ` = n, then also
`/paralleln, as desired.

(You can also do this second part by contradiction. The argument is much the same.)

6. For each of the interpretations of the terms point, line, and distance given below, de-
termine if they are consistent with the axioms given on the back of the cover sheet. If
the interpretation is not consistent, state all axioms it contradicts, and explain why.

D

C B

A (a) 5 points The plane contains exactly four points, A, B, C,

and D. There are six lines:
←→
AB,

←→
AC,

←→
AD,

←→
BC,

←→
BD, and

←→
CD, and the distances between points are given by |AD| =
|BD| = |CD| = 1 and |AB| = |BC| = |CA| = √

3.

Solution: We’ll check each of the axioms in turn:

Incidence Axiom: Satisfied. Each line contains two points, each pair of points
lies on a unique line, and each line has at least one point not on it.

Parallel Axiom: Satified. For each line, there is another line which is disjoint

from it, and hence parallel. Specifically,
←→
AB‖

←→
CD,

←→
AC‖

←→
BD, and

←→
AD‖

←→
BC.

Ruler Axiom: This one fails. Each line has only two points, and R is uncount-
able. So there is no possibility of a bijection of any of the lines with R.
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(b) 5 points Points are elements (x, y) ∈ R2 with −1 < x < 1. A line is the set of

points which satisfy y = mx+b where m and b are real numbers (and−1 < x < 1);
in addition, the points which satisfy x = a where −1 < a < 1
are also lines. The distance between two points (x1, y1) and

(x2, y2) is given by

√(
x1

x2
1 − 1

− x2

x2
2 − 1

)2

+ (y1 − y2)
2

Solution:

Incidence Axiom: As before, the incidence axiom holds. Given any two points
(x1, y1) and (x2, y2) in the strip, we can find a unique line passing through
them as follows: If x1 = x2, then the line is x = x1. Otherwise, the line has
the equation

y − y1 =
y1 − y2

x1 − x2

(x− x1)

Each line contains infinitely many points, and for each line, there are plenty
of points not on it.

Parallel Axiom: This one fails. Here is a counterexample: Take the line y = 0,
and the point (0, 4). Then any line of the form y = mx+4 with−4 < m < 4
will pass through (0, 4) and be disjoint from y = 0 (and hence parallel to
it).

Ruler Axiom: The ruler axiom holds. The easy way to see this is to notice that
the given distance formula “stretches horizontal distances” near the sets{
(x, y) | x = ±1

}
. The transformation

f :
{
(x, y) ∈ R2 | − 1 < x < 1

} → R2 given by f(x, y) =

(
x

1− x2
, y

)

is a bijection of our strip with the regular plane R2 sending vertical lines
to vertical lines, and a line segment of the form y = mx + b (−1 < x < 1)
to a curve with horizontal asymptotes at y = m + b and y = −m + b. The
distance formula given just measures the distance (in R2) between points
on this curve.
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Introduction
Euclid’s Elements form one of the most beautiful and influential works of science in the history of
 humankind. Its beauty lies in its logical development of geometry and other branches of mathematics. It has
 influenced all branches of science but none so much as mathematics and the exact sciences. The Elements
 have been studied 24 centuries in many languages starting, of course, in the original Greek, then in Arabic,
 Latin, and many modern languages.

I'm creating this version of Euclid’s Elements for a couple of reasons. The main one is to rekindle an interest
 in the Elements, and the web is a great way to do that. Another reason is to show how Java applets can be
 used to illustrate geometry. That also helps to bring the Elements alive.

The text of all 13 Books is complete, and all of the figures are illustrated using the Geometry Applet, even
 those in the last three books on solid geometry that are three-dimensional. I still have a lot to write in the
 guide sections and that will keep me busy for quite a while.

This edition of Euclid’s Elements uses a Java applet called the Geometry Applet to illustrate the diagrams. If
 you enable Java on your browser, then you’ll be able to dynamically change the diagrams. In order to see
 how, please read Using the Geometry Applet before moving on to the Table of Contents.
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