Welcome to MAT 118

Your final grade was based on the following scheme: Homeworks - 25%; midterms - 20% each; Final exam - 35%, where the score for each item is out of a possible 100.

Grades were calculated according to the following procedure:

A = 75 and up
B = between 60 and 75
C = between 40 and 60
D = between 35 and 40

In some cases, adjustments were made according to factors such as class participation and extra credit.

Important Announcements:

- **Final Exam time and place**: Monday, December 14, 11:15am-1:45pm, Old Chemistry Room 116
- **A review for the final exam is available** [here](#).
- **November 16**: The syllabus has been updated to point out that Mini-Excursion 3 (population growth) will be covered on the final exam.
- **October 10**: Some changes to the syllabus have been made. In particular, midterm 2 will cover chapters 5, 6 and 9.

There is much more to mathematics than just calculations and solving equations. In this course we will examine several mathematical topics accessible to students with an understanding of high-school mathematics. These will be selected from among the following: voting methods; the mathematics of money; probability; graphs, paths, and networks; tilings and polyhedra; game theory; and other topics.

For more information, please select General information link in the menu to the left.
Welcome to MAT 118

Your final grade was based on the following scheme: Homeworks - 25%; midterms - 20% each; Final exam - 35%, where the score for each item is out of a possible 100.

Grades were calculated according to the following procedure:

A = 75 and up
B = between 60 and 75
C = between 40 and 60
D = between 35 and 40

In some cases, adjustments were made according to factors such as class participation and extra credit.

Important Announcements:

- **Final Exam time and place:** Monday, December 14, 11:15am-1:45pm, Old Chemistry Room 116
- A review for the final exam is available [here](#).
- November 16: The syllabus has been updated to point out that Mini-Excursion 3 (population growth) will be covered on the final exam.
- October 10: Some changes to the syllabus have been made. In particular, midterm 2 will cover chapters 5, 6 and 9.

There is much more to mathematics than just calculations and solving equations. In this course we will examine several mathematical topics accessible to students with an understanding of high-school mathematics. These will be selected from among the following: voting methods; the mathematics of money; probability; graphs, paths, and networks; tilings and polyhedra; game theory; and other topics.

For more information, please select General information link in the menu to the left.
MAT 118: Mathematical Thinking
Fall 2009

Place and time:

<table>
<thead>
<tr>
<th>Lecture MWF</th>
<th>9:35am-10:30am</th>
<th>Light Engineering Lab 102</th>
<th>Andrew Bulawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec 01 M</td>
<td>3:50pm-4:45pm</td>
<td>Earth & Space Science 79</td>
<td>Shane D'Mello</td>
</tr>
<tr>
<td>Rec 02 W</td>
<td>3:50pm-4:45pm</td>
<td>Library E4315</td>
<td>Shane D'Mello</td>
</tr>
<tr>
<td>Rec 03 Tu</td>
<td>9:50am-10:45am</td>
<td>Physics P112</td>
<td>Travis Waddington</td>
</tr>
<tr>
<td>Rec 04 Th</td>
<td>9:50am-10:45am</td>
<td>Physics P112</td>
<td>Travis Waddington</td>
</tr>
</tbody>
</table>

Instructors and Office Hours:

email addresses are @math.sunysb.edu

Andrew Bulawa

- email: abulawa
- office hours: Math 4-103 Monday, Wednesday 12-1
 Math S-240A Monday 1-2

Shane D'Mello

- email: shane
- office hours: Physics D-126 Wednesdays 10:30-11:30am
 MLC: Math S-240A Monday, Wednesday 2-3

Travis Waddington

- email: ratatosk
- office hours: Math 3-122 Thursday 2:15-3:15
 MLC: Math S-240A Tuesday, Thursday 11:30-12:30

When sending an email, please begin the subject line with "mat118".

Course description:

There is much more to mathematics than just calculations and solving equations. In this course we will examine several mathematical topics accessible to students with an understanding of high-school mathematics. These will be selected from among the following: voting methods; the mathematics of money; probability; graphs, paths, and networks; tilings and polyhedra; game theory; and other topics.
Textbook:
Excursions in Modern Mathematics, seventh edition by Peter Tannenbaum.

Homeworks:
You can not learn mathematics without doing mathematics. Each week a homework assignment will be posted online. These will be due the following week in recitation. While you may work together with other students on the homework assignments, write up your own solutions in your own words. The goal of the homework is for you to understand the material, not to merely hand in some paper. Late homeworks will generally not be accepted.

Exams:
There will be two in-class midterms and a final exam. The midterm dates are October 5 and November 2. There will be no makeup exams; if one midterm exam is missed because of a serious (documented) illness or emergency, the semester grade will be determined based on the balance of the work in the course.

Grading policy
Final grade will be based on the following scheme: Homeworks - 25%; midterms - 20% each; Final exam - 35%.

Information for students with disabilities
If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml

Copyright 2008 Stony Brook University
Syllabus

<table>
<thead>
<tr>
<th>Topics</th>
<th>Sections</th>
<th>Dates</th>
<th>Homework (due the following week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1. Mathematics of Voting</td>
<td>1.1-1.4</td>
<td>8/31-9/4</td>
<td>Chapter 1: 2, 8, 14, 20, 30, 63, 64 click home on the left if you do not have the text</td>
</tr>
<tr>
<td>Voting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>1.5, 1.6, 2.1</td>
<td>9/9, 9/11</td>
<td>Chapter 1: 36, 40, 44, 50 Chapter 2: 1, 4, 7, 9, 10 click home on the left if you do not have the text</td>
</tr>
<tr>
<td>fairness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow's impossibility theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2. Weighted Voting Systems</td>
<td>2.2, 2.3, 3.1-3.3</td>
<td>9/14-9/18</td>
<td>Chapter 2: 12, 20, 21, 42, 52, 55, 72(a) click home on the left if you do not have the text</td>
</tr>
<tr>
<td>Banzhaf power index</td>
<td>3.4-3.7, 5.1</td>
<td>9/21-9/25</td>
<td>Chapter 3: 25, 27, 32, 33, 34, 44, 50, 55, 62, 69, 77</td>
</tr>
<tr>
<td>C3. Fair Division</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>concepts and definitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fair-division methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5. Euler Circuits</td>
<td>5.1-5.3</td>
<td>9/30, 10/2</td>
<td>No homework for next week.</td>
</tr>
<tr>
<td>routing problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>language and concepts of graph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>graph modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Midterm 1
(Chapters 1-3) 10/5
<table>
<thead>
<tr>
<th>Course Section</th>
<th>Dates</th>
<th>Reading Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5. Euler Circuits</td>
<td>5.3-5.7</td>
<td>Chapter 5: 7,10,11,13,17,23,28,30,48,64,66</td>
</tr>
<tr>
<td>C6. The Mathematics of Touring</td>
<td>6.1-6.8</td>
<td>Chapter 5: 39,40</td>
</tr>
<tr>
<td></td>
<td>10/12-10/16</td>
<td>Chapter 6: 2,10,14,17,27,34,35,40,41,45,48,55</td>
</tr>
<tr>
<td>C9. Spiral Growth in Nature</td>
<td>9.1-9.4</td>
<td>Chapter 9: 1,3,14,26,28,37,38,41,48,68</td>
</tr>
<tr>
<td></td>
<td>10/19-10/23</td>
<td></td>
</tr>
<tr>
<td>Review for 2nd midterm and</td>
<td>10.1-10.3</td>
<td>Chapter 10: 1,3,7,9,14,24,28,32,37,48,84</td>
</tr>
<tr>
<td>C10. The Mathematics of Money</td>
<td>10/26-10/30</td>
<td></td>
</tr>
<tr>
<td>Midterm 2 (Chapters 5,6,9)</td>
<td>11/2</td>
<td></td>
</tr>
<tr>
<td>C10. The Mathematics of Money</td>
<td>10.4-10.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/4,11/6,11/9</td>
<td>Chapter 10: 56,60,63,69,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mini-Excursion 3: 9,13,17,19,22,24,26,28,31</td>
</tr>
<tr>
<td>Topic</td>
<td>textbook chapters</td>
<td>Dates</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>The Mathematics of Population Growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11. The Mathematics of Symmetry</td>
<td>11.1-11.5</td>
<td>11/10, 11/13</td>
</tr>
<tr>
<td>(continued)</td>
<td>11.6-11.7</td>
<td>11/16-11/20</td>
</tr>
<tr>
<td>Review</td>
<td></td>
<td>12/7-12/11</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Monday, December 14</td>
<td>11:15am-12/14</td>
</tr>
</tbody>
</table>
1:45pm
Old Chemistry
116
MAT118 Final Exam Review

Chapter 1: Voting Methods

- preference ballots & schedules
- fairness criteria
- voting methods

Chapter 2: Weighted Voting

- weighted voting systems
- quota, dictators, veto power
- Banzhaf power
 - winning coalitions
 - critical players
 - Banzhaf power index

Chapter 3: Fair Division

- fair share
- lone chooser method
- lone divider method
- last diminisher method
- method of sealed bids
- method of markers

Chapter 5: Euler Circuits

- graphs, modelling
- Euler paths and Euler circuits
- Euler’s path and circuit theorems
- Euler’s sum of degrees theorem

Chapter 6: Travelling Salesman Problems

- Hamilton paths and circuits
- weighted graphs
- exhaustive search (brute force) method
- nearest neighbor/repetative nearest neighbor methods
- cheapest link method

Chapter 10: Mathematics of Money

- percentages
- simple and compound interest
- fixed deferred annuities

Mini-Excursion 3: Population Growth

- linear growth, common difference
 - arithmetic sum formula
- exponential growth, common ratio
 - geometric sum formula
- logistic growth
 - relative population
 - complimentary seeds
– logistic equation
– attracting points, 2- and 4-cycle patterns

Chapter 11: Symmetry

• rigid motions
• proper vs improper rigid motions
• finding translation vectors, rotocenters, reflection axes
• symmetry types
 – for finite shapes
 – for border patterns
 – for wallpaper patterns

Chapter 15: Probability

• counting: factorials, permutations, combinations
• sample spaces
• probability
• tallying in equiprobable spaces
• multiplicative property of independent events
• complimentary events
1. Chapter 1, #41, question 1 on exam 1.

2. Consider the weighted voting system \([10: x, 3, 2, 1, 1]\).
 (a) For what values of \(x\), does the first player have veto power?
 (b) For what values of \(x\), is the first player a dictator?

3. Consider the weighted voting system \([7: 5, 4, 2, 2]\).
 (a) Write down all of the winning coalitions.
 (b) Circle the critical players in each of the winning coalitions you just wrote down.
 (c) Write the Banzhaf power distribution for this voting system.

3\(\frac{1}{2}\). Chapter 3: 23, 35, 45, 59, 65

4. #34 in Chapter 5.

5. #37 in Chapter 5.

6. In a graph with \(x\) vertices of even degree and \(y\) vertices of odd degree,
 (a) for what values of \(x\) and \(y\) does the graph admit an Euler circuit? Where must the circuit begin and end?
 (b) for what values of \(x\) and \(y\) does the graph admit an Euler path? Where must the path begin and end?

7. #37 and #43 in Chapter 6.

8. Let the figure \(F\) be a square with sides of length 5 inches. What are the dimensions of the \(L\) shaped piece(s) which are gnomons to \(F\)?

9. Express the sum \(F_N + F_{N+1} + F_{N+2} + F_{N+3}\) of four consecutive terms in the Fibonacci sequence in terms of the first two.

10. Let \(\phi\) denote the golden ratio. Simplify
 \[
 \sqrt{1 + \sqrt{1 + \sqrt{1 + \phi}}} \tag{11}
 \]

11. (a) Find \(c\) and \(n\) so that
 \[1.11111 = \frac{c^n - 1}{c - 1}\]

(b) Add the numbers 23 through 547.

12. Suppose that you invest $5000 in an account which earns 6% annual interest compounded quarterly. What is the amount in your account after 10 years?

13. Suppose that you invest $50 at the beginning of every month in an account which earns 6% annual interest compounded monthly. What is the amount in your account at the end of 20 years?

14. Suppose a population of 50 termites grows according to a linear growth model. Suppose that after one month, the population is 75. What will the population be after one year?

15. Suppose the number of people infected by a cold virus increases exponentially. If the number of people infected increased from 3000 to 4000 in one month, how many people will be infected at the end of the year?
16. A population of rabbits is measured on a monthly basis and is found to obey a logistic growth model with growth parameter $r = 3$.
 (a) If the initial population is at 40% capacity, then how many rabbits will there be after 3 months?
 (b) After 20 months the population is at approximately 63.63% of capacity? What would you expect the population to be after 20 months if the initial population were instead at 60% capacity?

You may express your answers to the following questions using factorials and exponents.

18. Carlos brings with him on a trip two pairs of shoes, three pairs of pants, and five shirts. How many outfits can Carlos create?

19.
 (a) How many ways can 6 people line up in a queue?
 (b) How many ways can 6 people arrange themselves evenly around a round table?

20. Kermit wants to pick up a half-dozen donuts from the local bakery, each of a different variety. Assuming the bakery is well stocked with 15 different varieties, how many different donut selections can Kermit make? What if his selection need not consist of distinct varieties?

21. A child has a collection of 20 building blocks, each with a distinct color. How many different towers can he form a tower by stacking 7 blocks, one on top of the other.

22. Suppose a slice of bread with jelly on one side is twice as likely to land jelly side down than jelly side up.
 (a) What is the probability that it lands jelly side up?
 (b) If 10 jelly sided slices are dropped simultaneously, what is the probability that half of them land jelly side up?
 (b) If 10 jelly sided slices are dropped simultaneously, what is the probability that at least 2 of them land jelly side up?