
EXERCISES FROM THE PROBLEM SESSIONS FOR THE

CONFERENCE, “NEW TECHNIQUES IN BIRATIONAL

GEOMETRY”, 7-11 APRIL 2015

Alexander Kuznetsov. Exercises on Exceptional Collections. Let P be a
k-point of P2

k. Let π : X → P2 be the blowing up of P2
k at P . Let i : E → X be

the inclusion of the exceptional divisor, E ∼= P1
k. Let fP : X → P1 be the linear

projection away from P .

Associated to the blowing up π there is a full exceptional collection in Db(X),

E1 = 〈i∗OE(−1), π∗OP2 , π∗OP2(1), π∗OP2(2)〉.
Associated to the P1-bundle f there is another full exceptional collection in Db(X),

E2 = 〈f∗OP1 , f∗OP1(1), π∗OP2(1)⊗OX
f∗OP1 , π∗OP2(1)⊗OX

f∗OP1(1)〉.

Problem 0.1. Find a sequence of mutations from E1 to E2.

Next, let P1 and P2 be two distinct k-points of P2
k. Let ρ : Y → P2 be the

blowing up of P2
k at P1 and P2. The exceptional locus F has two disjoint connected

components, F1 and F2, each isomorphic to P1
k. Denote by j : F → X the inclusion.

The linear projections fP1
and fP2

induce a morphism,

(fP1
, fP2

) : Y → P1
k ×Spec(k) P1

k.

This morphism is a blowing up at the point Q = (fP1
(P2), fP2

(P1)). Denote by
h : G→ Y the exceptional divisor of this blowing up, G ∼= P1

k.

Associated to the blowing up ρ there is a full exceptional collection in Db(Y ),

F1 = 〈j∗OF1(−1), j∗OF2(−1), ρ∗OP2 , ρ∗OP2(1), ρ∗OP2(2)〉.
Associated to the blowing up (fP1 , fP2) there is a full exceptional collection in
Db(Y ),

F2 = 〈h∗OG(−1), f∗P1
OP1 ⊗OY

f∗P2
OP1 , f∗P1

OP1(1)⊗OY
f∗P2
OP1 ,

f∗P1
OP1 ⊗OY

f∗P2
OP1(1), f∗P1

OP1(1)⊗OY
f∗P2
OP1(1)〉.

Problem 0.2. Find a sequence of mutations from F1 to F2.

Burt Totaro. Exercises on Base Change Homomorphisms. Let k be a field.
For every k-variety Xk and for every integer q, there is the free Abelian group of
all q-cycles,

Zq(Xk) = 〈[Vk]|Vk ⊂ Xk, closed, integral, dim(Vk) = q〉.
Inside Zq(Xk) there is the subgroup Ratq(Xk) generated by all q-cycles of the form
u∗div(f), where u : W → Xk is any proper morphism from any normal k-variety of
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dimension q+ 1, where f is any nonzero rational function on W , and where div(f)
is the principal (Weil) divisor on W of f . The quotient group is the Chow group,

CHq(Xk) = Zq(Xk)/Ratq(Xk).

For every field extension F/k, denote Xk ×Spec(k) Spec(F ) by XF . For every Vk ⊂
Xk as above, the base change VF ⊂ XF is a closed subscheme of pure dimension q
that gives a cycle [VF ] ∈ Zq(XF ) (note that VF may not be integral). The induced
base change homomorphism,

uF/k,Xk,Zq : Zq(Xk)→ Zq(XF ), [Vk] 7→ [VF ],

maps Ratq(Xk) to Ratq(XF ). Thus, there is a well-defined homomorphism of Chow
groups,

uF/k,Xk,CHq
: CHq(Xk)→ CHq(XF ).

There is also an induced homomorphism of Q-vector spaces,

uF/k,Xk,CHq
⊗Q : CHq(Xk)⊗Q→ CHq(XF )⊗Q.

Problem 0.3. Find an example of a field k, a smooth, projective k-variety Xk, field
extension F/k, and an integer q such that the induced homomorphism uF/k,Xk,CHq

is not surjective. In fact, find an example such that uF/k,Xk,CHq
⊗Q is not surjective.

Problem 0.4. Find an example of a field k, a smooth, quasi-projective k-variety
Xk, field extension F/k, and an integer q such that the induced homomorphism
uF/k,Xk,CHq

is not injective. For a challenge, find an example whereXk is projective.

Problem 0.5. Prove that for every field k, for every quasi-projective k-variety Xk,
for every field extension F/k, and for every integer q the induced homomorphism
uF/k,Xk,CHq

⊗Q is injective.

Claire Voisin. Exercises on Torsion Cohomology, Griffiths Groups and
Decompositions of the Diagonal.

Problem 0.6. For every (second countable, Hausdorff) topological manifold M ,
prove that the singular cohomology group H1(M ;Z) is torsion-free.

Problem 0.7. For every smooth, projective, complex variety X, for the subgroups
CH1(X)alg ⊂ CH1(X)hom ⊂ CH1(X) of cycles that are algebraically equivalent
to zero, resp. homologically equivalent to zero, prove that the quotient Griffiths
group, CH1(X)hom/CH1(X)alg is a birational invariant.

Problem 0.8. For every smooth, projective, complex variety X, for every element
α ∈ H0(X,Ωq

X), if there exists a dense, Zariski open subset U ⊂ X such that α|U
is exact, then prove that α equals 0. Please do this without using mixed Hodge
structures.
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Problem 0.9. For every (second countable, Hausdorff) topological manifold M
that is connected and oriented, prove that the Künneth homomorphism,⊕

0≤p,q

Hp(M ;Z)⊗Hq(M ;Z)→
⊕
0≤r

Hr(M ×M ;Z),

is an isomorphism if and only if
⊕

rH
r(M ;Z) is torsion-free.

Problem 0.10. For every smooth, projective, complex variety X of dimension n,
for the diagonal class [∆X ] ∈ CHn(X ×X), there exists a decomposition

[∆X ] = a1[Z1 × T1] + · · ·+ ar[Zr × Tr]

for integers a1, . . . , ar, and for integral subvarieties of X, Z1, . . . , Zr, T1, . . . , Tr if
and only if numerical equivalence of cycles in X equals rational equivalence.

Problem 0.11. For every smooth, projective, complex surface X, for the cohomo-
logical diagonal class [∆X ] in H∗(Xan×Xan;Q), resp. in H∗(Xan×Xan;Z), there
exists a decomposition

[∆X ] = a1[Z1 × T1] + · · ·+ ar[Zr × Tr]

for integers a1, . . . , ar, and for integral subvarieties of X, Z1, . . . , Zr, T1, . . . , Tr if
and only if q(X) = pg(X) = 0, resp. if and only if both q(X) = pg(X) = 0 and
H∗(Xan;Z) is torsion-free.

Lev Borisov. Degrees of Calabi-Yaus. Recall that a smooth, projective variety
X is a Calabi-Yau variety if ωX

∼= OX , ifX is simply connected, and if h0(X,Ωq
X)

vanishes for 0 < q < dim(X).

Problem 0.12. Using computer code, using (skew-symmetric) Thom-Porteous,
and using Schubert calculus, compute the degrees of Pfaffian Calabi-Yau varieties,
respectively Grassmannian Calabi-Yau varieties.

Alena Pirutka. Problems on Rationality.

Problem 0.13. For a smooth quadric hypersurface Xk ⊂ Pn
k , prove that X is

rational if and only if X has a k-point.

Problem 0.14. Let k be an algebraically closed field. For every k-variety Xk and
for every field extension K/k, prove that Xk is k-rational if and only if the base
change XK is K-rational.

For the next sequence of exercises, let k be a field (not necessarily algebraically
closed nor even infinite). Let Xk be a k-variety of dimension m. Let φ : An

k 99K Xk

be a dominant rational transformation. Necessarily n ≥ m, and these exercises
investigate whether there exists φ with n = m.

Problem 0.15. Prove that there exists a dense, Zariski open U ⊂ An
k such that

φ|U is a morphism whose (nonempty) fibers are pure-dimensional of dimension
d = n−m.
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Problem 0.16. Assume now that k is infinite. Prove that there exists a k-point u
of U and a hyperplane H ⊂ An

k containing u such that the restriction of φ to U ∩H
is dominant. Use induction on n to prove that there exists a dominant rational
transformation from Am

k to Xk.

Problem 0.17. Finally, assume that k is a finite field. Let ` be an integer different
from the characteristic. Let K ⊂ k be the union of all extension fields of k of degree
`s, s > 0.

(a) First prove that U(K) is not empty.
(b) For an arbitrary point u = (u1, . . . , un) in An

k (K), use the Primitive El-
ement Theorem to prove that, up to a permutation, k(un) ⊂ k(un−1) ⊂
· · · ⊂ k(u1). Use this to prove that the ideal mu ⊂ k[x1, . . . , xn−1, xn] is
generated by elements in k[x1, . . . , xn−1] and elements of the form xn −
P (x1, . . . , xn−1).

(c) Finally, prove that there exists an affine hypersurface Z = Zero(xn −
P (x1, . . . , xn−1)) in An

k containing u such that the restriction of φ to Z ∩U
is dominant. Again use induction to prove that there exists a dominant
rational transformation from Am

k to Xk.
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