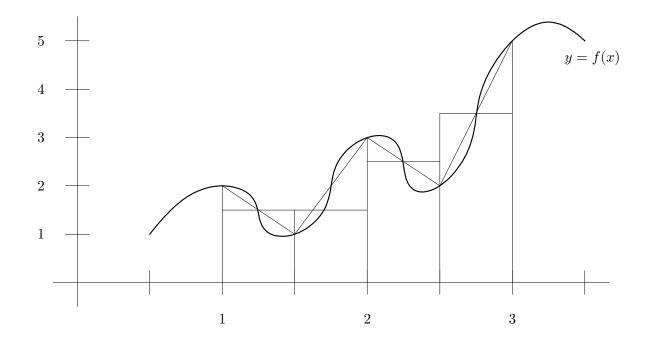

Problem 1. The picture below shows the graph of a function g.

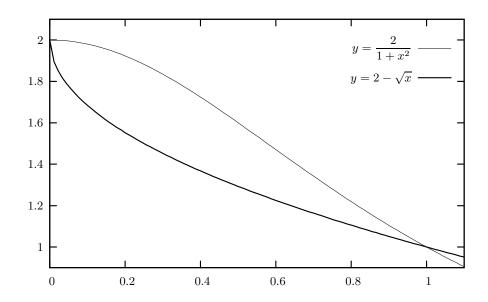


(a) **[10 points]** Find $\int_{-1}^{5} g'(t) dt$.

(b) **[10 points]** Let $A(x) = \int_1^x g(t) dt$. Find A'(2).

Problem 2. [20 points] Determine whether $\int_1^\infty \frac{\sin^2(x)}{x^3} dx$ converges or diverges. Justify your answer completely.

Problem 3. Below is a sketch of y = f(x). The polygonal paths may make it easier to approximate $\int_1^3 f(x)dx$.


(a) [10 points] Use the trapezoid rule with n=4 to approximate $\int_1^3 f(x)dx$.

(b) [10 points] Use the midpoint rule with n=4 to approximate $\int_1^3 f(x)dx$.

Problem 4. [20 points] Consider the region trapped by the two curves

$$y = \frac{2}{1+x^2}$$
 and $y = 2 - \sqrt{x}$

between the points (0,2) and (1,1). Here is a sketch showing the region:

Use an integral to express the volume of the solid formed by rotating this region around the y-axis. Do not evaluate the integral.

Problem 5. [5 points each] Matching. Put the letter that matches the answer on the line. You need not show your work.

$$\bullet \quad \underline{\qquad} \quad \int_{-1}^{3} \frac{dx}{x^2}$$

$$\bullet \quad \underline{\qquad} \quad \int_0^1 x \sqrt{1 - x^2} dx$$

$$\bullet \ \ \, \int_{-\frac{1}{2}}^{0} 3y \, e^{-2y} \, dy$$

• ____
$$\int_{-1}^{1} \sqrt{1-t^2} dt$$

(a)
$$-\frac{3}{4}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\infty$$

(d)
$$\frac{1}{3}$$

\mathbf{EXAM}

Midterm 1

Math 132

Tuesday February 24, 2004

Name
Student ID
Lecture Section
Recitation Section

1	/20
2	/20
3	/20
4	/20
5	/20
total	/100