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Problem 1

The “only if” part is relatively easier. If a ∈ R has a square root, which means that
a = b2 for some b ∈ R, and we know from the theorems in the book about the order
structure of R that b2 ≥ 0.

We now prove the “if” part. For any real number a, define a subset of R:

Fa = {x ∈ R|x2 ≤ a}

Since a ≥ 0, 0 ∈ Fa, thus Fa is an nonempty subset. Since (a+ 1)2 = a2 + 2a+ 1 > a, we
claim that a+1 is an upper bound of Fa. To see this, if for some x ∈ Fa we have x > a+1,
then x2 > x(a + 1) > (a + 1)2 > a, contradicts to the fact that x ∈ Fa. Now, we get a
nonempty subset of R which is bounded from above, by the Completeness Axiom for Real
Numbers, there exists a supremum, denote supFa = b.

We would like to prove b2 = a. The proof is done by Contradiction. If b2 > a, by the
Archimedean Property of R, there exists for some positive integer n, such that n(b2−a) > 2b,
therefore b2 − 2b

n > a, which implies that (b − 1
n)2 = b2 − 2b

n + 1
n2 > b2 − 2b

n > a, there-

fore b − 1
n is also an upper bound for Fa, contradicting the fact that b is the least upper

bound of Fa. If b2 < a, also by the Archimedean Property of R, for some positive in-
teger n1, n1.

1
2(a − b2) > 2b, and for some positive integer n2, n2.

1
2(a − b2) > 1. Let

n = max(n1, n2), then 2b
n < 1

2(a−b2) and 1
n2 <

1
2(a−b2), therefore (b+ 1

n)2 = b2+ 2b
n + 1

n2 <

b2 + 1
2(a − b2) + 1

2(a − b2) = a, therefore b + 1
n ∈ Fa, which contradicts the fact that b is

an upper bound for Fa since b < b+ 1
n . This concludes that any nonnegative number has

a square root in R.

Problem 2

a). “c = supA” means that ∀a ∈ A, c ≥ a and ∀c′ < c, ∃a ∈ A such that a > c′.
b). By the definition from part a), we know that ∀ε > 0, ∃a ∈ A such that a > supA−ε,

and also we have a ≤ supA, therefore supA− ε < a ≤ supA.
c). By the Complete Axiom for Real Numbers, the bounded set {an|n ∈ N} has a

supremum, denoted by a = sup{an|n ∈ N}. By part b), ∀ε > 0, ∃N ∈ N such that
a − ε < aN ≤ a, since the sequence is increasing, for all n > N , an ≥ aN , therefore
a− ε < an ≤ a, which implies that

|an − a| < ε
1
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for all n > N , therefore limn→∞ an = a = sup{an|n ∈ N}.

Problem 3

a) Since (an) and (bn) are both bounded, there exist M1,M2 > 0 such that

|an| < M1, |bn| < M2

for all n, then |anbn| < M1M2 for all n, which means the product sequence (anbn) is
bounded.

b) “(anbn) is bounded” does not imply (an) and (bn) are bounded. Take for n even
an = n and bn = 0, and for n odd take an = 0 and bn = 0. Then for any n we have
anbn = 0, while neither (an) nor (bn) is bounded.

Problem 4

There are two ways to prove the convergence of the sequence and compute the limit.
The more directly computational one is by applying various limit laws for sequences, while
alternatively one could verify the sequence is Cauchy and then determine the limit from
the definition. The first is easier, but pedagogically we encourage you to understand both
approaches.

Applying Limit Theorems:

First simplify the sequence to be

an =
1 + 1

n2n

2 + 1√
n

.

Then note that

1

n2n
≤ 1

n
,

and since lim 1
n = 0, we must also have lim 1

n2n = 0 by the squeeze theorem between 1
n and

0. We also know that lim 1√
n

= 0. Thus by applying the limit laws for quotients, and then

the limit laws for sums we get

lim
n→∞

n+ 2−n

2n+
√
n

=
lim
n→∞

(
1 + 1

n2n

)
lim
n→∞

(
2 + 1√

n

) =
1 + 0

2 + 0
=

1

2
.

Cauchy Sequence Proof:
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For n, k ∈ N,

|an − an+k| =|
n+ 2−n

2n+
√
n
− (n+ k) + 2−(n+k)

2(n+ k) +
√
n+ k

|

=
|(2(n+ k) +

√
n+ k)(n+ 2−n)− (2n+

√
n)((n+ k) + 2−(n+k))|

(2n+
√
n)(2(n+ k) +

√
n+ k)

≤21−n(n+ k)

4n(n+ k)
+

21−(n+k)n

4n(n+ k)
+

2−n
√
n+ k

4n(n+ k)
+

2−(n+k)
√
n

4n(n+ k)
+
|
√
n+ k −

√
n|

4
√
n(n+ k)

=
1

4n
+

1

4n
+

1

4n
+

1

4n
+

1

4
√
n

≤ 2√
n

Thus, ∀ε > 0, pick N =
⌈
(2ε )

2
⌉
, then ∀n > N , k ∈ N,

|an − an+k| < ε

which implies that (an) is a Cauchy sequence.

∀ε > 0, pick N =
⌈
( 1
4ε)

2
⌉
, then ∀n > N ,

| n+ 2−n

2n+
√
n
− 1

2
| =
√
n− 21−n

2(2n+
√
n)
≤
√
n

4n
=

1

4
√
n
< ε

which means

lim
n→∞

an =
1

2
.


