SOLUTIONS TO PRACTICE MIDTERM II, FALL 2014, MAT 319/320, COURTESY OF CHENGJIAN YAO

Problem 1

The "only if" part is relatively easier. If $a \in \mathbb{R}$ has a square root, which means that $a=b^{2}$ for some $b \in \mathbb{R}$, and we know from the theorems in the book about the order structure of \mathbb{R} that $b^{2} \geq 0$.

We now prove the "if" part. For any real number a, define a subset of \mathbb{R} :

$$
F_{a}=\left\{x \in \mathbb{R} \mid x^{2} \leq a\right\}
$$

Since $a \geq 0,0 \in F_{a}$, thus F_{a} is an nonempty subset. Since $(a+1)^{2}=a^{2}+2 a+1>a$, we claim that $a+1$ is an upper bound of F_{a}. To see this, if for some $x \in F_{a}$ we have $x>a+1$, then $x^{2}>x(a+1)>(a+1)^{2}>a$, contradicts to the fact that $x \in F_{a}$. Now, we get a nonempty subset of \mathbb{R} which is bounded from above, by the Completeness Axiom for Real Numbers, there exists a supremum, denote $\sup F_{a}=b$.

We would like to prove $b^{2}=a$. The proof is done by Contradiction. If $b^{2}>a$, by the Archimedean Property of \mathbb{R}, there exists for some positive integer n, such that $n\left(b^{2}-a\right)>2 b$, therefore $b^{2}-\frac{2 b}{n}>a$, which implies that $\left(b-\frac{1}{n}\right)^{2}=b^{2}-\frac{2 b}{n}+\frac{1}{n^{2}}>b^{2}-\frac{2 b}{n}>a$, therefore $b-\frac{1}{n}$ is also an upper bound for F_{a}, contradicting the fact that b is the least upper bound of F_{a}. If $b^{2}<a$, also by the Archimedean Property of \mathbb{R}, for some positive integer $n_{1}, n_{1} \cdot \frac{1}{2}\left(a-b^{2}\right)>2 b$, and for some positive integer $n_{2}, n_{2} \cdot \frac{1}{2}\left(a-b^{2}\right)>1$. Let $n=\max \left(n_{1}, n_{2}\right)$, then $\frac{2 b}{n}<\frac{1}{2}\left(a-b^{2}\right)$ and $\frac{1}{n^{2}}<\frac{1}{2}\left(a-b^{2}\right)$, therefore $\left(b+\frac{1}{n}\right)^{2}=b^{2}+\frac{2 b}{n}+\frac{1}{n^{2}}<$ $b^{2}+\frac{1}{2}\left(a-b^{2}\right)+\frac{1}{2}\left(a-b^{2}\right)=a$, therefore $b+\frac{1}{n} \in F_{a}$, which contradicts the fact that b is an upper bound for F_{a} since $b<b+\frac{1}{n}$. This concludes that any nonnegative number has a square root in \mathbb{R}.

Problem 2

a). " $c=\sup A$ " means that $\forall a \in A, c \geq a$ and $\forall c^{\prime}<c, \exists a \in A$ such that $a>c^{\prime}$.
b). By the definition from part a), we know that $\forall \epsilon>0, \exists a \in A$ such that $a>\sup A-\epsilon$, and also we have $a \leq \sup A$, therefore $\sup A-\epsilon<a \leq \sup A$.
c). By the Complete Axiom for Real Numbers, the bounded set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ has a supremum, denoted by $a=\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}$. By part b), $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $a-\epsilon<a_{N} \leq a$, since the sequence is increasing, for all $n>N, a_{n} \geq a_{N}$, therefore $a-\epsilon<a_{n} \leq a$, which implies that

$$
\left|a_{n}-a\right|<\epsilon
$$

for all $n>N$, therefore $\lim _{n \rightarrow \infty} a_{n}=a=\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}$.

Problem 3

a) Since $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are both bounded, there exist $M_{1}, M_{2}>0$ such that

$$
\left|a_{n}\right|<M_{1},\left|b_{n}\right|<M_{2}
$$

for all n, then $\left|a_{n} b_{n}\right|<M_{1} M_{2}$ for all n, which means the product sequence $\left(a_{n} b_{n}\right)$ is bounded.
b) " $\left(a_{n} b_{n}\right)$ is bounded" does not imply $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded. Take for n even $a_{n}=n$ and $b_{n}=0$, and for n odd take $a_{n}=0$ and $b_{n}=0$. Then for any n we have $a_{n} b_{n}=0$, while neither $\left(a_{n}\right)$ nor $\left(b_{n}\right)$ is bounded.

Problem 4

There are two ways to prove the convergence of the sequence and compute the limit. The more directly computational one is by applying various limit laws for sequences, while alternatively one could verify the sequence is Cauchy and then determine the limit from the definition. The first is easier, but pedagogically we encourage you to understand both approaches.

Applying Limit Theorems:

First simplify the sequence to be

$$
a_{n}=\frac{1+\frac{1}{n 2^{n}}}{2+\frac{1}{\sqrt{n}}} .
$$

Then note that

$$
\frac{1}{n 2^{n}} \leq \frac{1}{n},
$$

and since $\lim \frac{1}{n}=0$, we must also have $\lim \frac{1}{n 2^{n}}=0$ by the squeeze theorem between $\frac{1}{n}$ and 0 . We also know that $\lim \frac{1}{\sqrt{n}}=0$. Thus by applying the limit laws for quotients, and then the limit laws for sums we get

$$
\lim _{n \rightarrow \infty} \frac{n+2^{-n}}{2 n+\sqrt{n}}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n 2^{n}}\right)}{\lim _{n \rightarrow \infty}\left(2+\frac{1}{\sqrt{n}}\right)}=\frac{1+0}{2+0}=\frac{1}{2} .
$$

For $n, k \in \mathbb{N}$,

$$
\begin{aligned}
\left|a_{n}-a_{n+k}\right| & =\left|\frac{n+2^{-n}}{2 n+\sqrt{n}}-\frac{(n+k)+2^{-(n+k)}}{2(n+k)+\sqrt{n+k}}\right| \\
& =\frac{\left|(2(n+k)+\sqrt{n+k})\left(n+2^{-n}\right)-(2 n+\sqrt{n})\left((n+k)+2^{-(n+k)}\right)\right|}{(2 n+\sqrt{n})(2(n+k)+\sqrt{n+k})} \\
& \leq \frac{2^{1-n}(n+k)}{4 n(n+k)}+\frac{2^{1-(n+k)} n}{4 n(n+k)}+\frac{2^{-n} \sqrt{n+k}}{4 n(n+k)}+\frac{2^{-(n+k)} \sqrt{n}}{4 n(n+k)}+\frac{|\sqrt{n+k}-\sqrt{n}|}{4 \sqrt{n(n+k)}} \\
& =\frac{1}{4 n}+\frac{1}{4 n}+\frac{1}{4 n}+\frac{1}{4 n}+\frac{1}{4 \sqrt{n}} \\
& \leq \frac{2}{\sqrt{n}}
\end{aligned}
$$

Thus, $\forall \epsilon>0$, pick $N=\left\lceil\left(\frac{2}{\epsilon}\right)^{2}\right\rceil$, then $\forall n>N, k \in \mathbb{N}$,

$$
\left|a_{n}-a_{n+k}\right|<\epsilon
$$

which implies that $\left(a_{n}\right)$ is a Cauchy sequence.

$$
\forall \epsilon>0, \text { pick } N=\left\lceil\left(\frac{1}{4 \epsilon}\right)^{2}\right\rceil, \text { then } \forall n>N,
$$

$$
\left|\frac{n+2^{-n}}{2 n+\sqrt{n}}-\frac{1}{2}\right|=\frac{\sqrt{n}-2^{1-n}}{2(2 n+\sqrt{n})} \leq \frac{\sqrt{n}}{4 n}=\frac{1}{4 \sqrt{n}}<\epsilon
$$

which means

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2} .
$$

