Stony Brook ID number:

Problem	1	2	3	4	5	Total
Score						

MAT 319/MAT 320 Analysis Midterm 1

October 2, 2012

No books or notes may be consulted during this test.
No calculators may be used.
Show all your work on these pages!
Total score $=100$

1. (40 points) Here \mathbf{N} represents the counting numbers $\{1,2,3,4, \ldots\}, \mathbf{Z}$ represents the integers, \mathbf{Q} the rational numbers and \mathbf{R} the real numbers.
a. Explain carefully why the equation $x+5=1$ has no solution in \mathbf{N}.
b. Explain carefully why the equation $3 x=2$ has no solution in \mathbf{Z}.
c. Explain carefully why the equation $x^{2}=7$ has no solution in \mathbf{Q}.
d. Explain carefully why the least upper bound property (the Completeness Axiom) guarantees that the equation $x^{2}=7$ has a solution in \mathbf{R}.
2. (15 points) Prove by induction that the sum of the first n odd integers is equal to n^{2}, i.e. that

$$
1+3+5+7+\cdots+(2 n-1)=n^{2}
$$

3. (15 points) For a pair (x, y) of real numbers, define $\|(x, y)\|=|x|+|y|$. Prove carefully that

$$
\|(a+c, b+d)\| \leq\|(a, b)\|+\|(c, d)\| .
$$

4. (15 points) Here $\sin (x)$ is the usual sine function. Show that the sequence $a_{1}, a_{2}, a_{3}, \ldots$ defined by $a_{n}=\frac{\sin (n)}{n}$ converges, with limit 0 .
5. (15 points) Suppose $\left(s_{n}\right)$ is a sequence of positive numbers converging to the limit s. Prove that the sequence $\left(\sqrt{s_{n}}\right)$ converges to \sqrt{s}. Hint: give separate proofs for $s=0$ and $s>0$.
