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INTRODUCTION

In 1903 Severi [S] proved that if X, X " ¢ P’ are smooth surfaces whose
union is the complete intersection of r — 2 hypersurfaces of degrees
d,,...,d,_,, then hypersurfaces of degree k > ) d, —r cut out a complete
linear series on X (cf. [SR, XIIL.9.8]). The purpose of this paper is first of all
to show that elementary arguments using the Kodaira vanishing theorem lead
to a simple variant of Severi’s statement (Theorem 7 below) which extends it
in serval directions. More importantly, we hope to convince the reader that
this result has a surprising number of applications to questions involving the
equations defining projective varieties.

Consider to begin with a smooth complex projective variety X c P’ of
dimension n and codimension e = r — n. In this setting, our theorem asserts
the vanishing of the higher cohomology of suitable twists of the ath power of
the ideal sheaf %, of X in P'.

Proposition 1. Assume that X is cut out scheme-theoretically in P" by hyper-
surfaces of degrees d, >d, > --->d,, . Then

H'(P', 72 (k) =0 fori>1providedk >ad +d,+---+d,—r.
Note that only the degrees of the first ¢ = codim(X, P") defining equations
come into play here. When n =2 and a =1 this is a consequence of Severi’s
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result. We remark that if d, = --- = d, = d—a case that suffices for many
of the applications—then there is a particularly quick proof of the proposition
(see Remark 1.10).

Proposition 1 has a number of corollaries. First of all, taking a = 1, we get

Corollary 2. Keeping notation as above, if d\ +---+d, < r+1, then X is
projectively normal. If d | +---+d, <r, then X is projectively Cohen-Macaulay.

For example, if X" cC P! s cut out by quadrics, then X is projectively

normal, a fact illustrated by numerous classical examples.

Corollary 2 in turn leads to a simplification and strengthening of the “Baby-
lonian tower” theorems of Hartshorne and Barth-Van de Ven [B] concerning
subvarieties of very low degree in projective space. Specifically, suppose that
X c P’ as above has degree d. Then, as is well known, X is defined by
hypersurfaces of degree d, and hence it follows from the corollary that X is
projectively Cohen-Macaulay as soon as de < r. Elementary estimates for
Cohen-Macaulay rings then show that the homogeneous ideal 7, of X has
< de minimal generators. On the other hand, an (elementary) theorem of Falt-
ings [F] states that if X C P’ is defined scheme-theoretically by r/2 or fewer
equations, then X is a complete intersection. Hence

Corollary 3. Assume that X C P" is a smooth variety of degree d, dimension
n, and codimension e . If

r
dS% [——+

then X is a complete intersection.

Hartshorne (cf. [H]) showed that if one fixes d and e and lets n go to in-
finity, then eventually X becomes a complete intersection. Barth and Van
de Ven [B] obtained the same conclusion under the explicit assumption that
d(d—-1) <2n/5. When e = 2, Ran [R1] proved a much stronger inequality,
which was strengthened in [HS]. The motivation of these results is of course the
(still wide open) conjecture that any smooth subvariety of sufficiently small codi-
mension in projective space is a complete intersection. The possiblity of using
Faltings’s theorem in the present context was suggested to us by F. L. Zak (com-
pare [F12]). Flenner [Fl11, F12] and Sato [Sat] have established Babylonian tower
theorems in considerably more general settings, for example weighted projective
spaces. It would be interesting to find analogous extensions of Proposition 1.
The next applications concern the Castelnuovo-Mumford regularity of X C
P". Recall that one says that X is k-regular if H'(P", %, (k —i)) = 0 for
i > 0. The significance of this concept stems from the fact that the regularity
of X governs the complexity of computing the syzygies and other invariants of
X (cf. [BS1, BS2]). For instance, a theorem of Mumford’s [M] states that X
is k-regular if and only if for every p > 0 the minimal generators of the pth
module of syzygies of the homogeneous ideal I, occur in degrees < k+p. Itis
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VANISHING THEOREMS 589

therefore of interest to bound the regularity of X in terms of the degrees of its
defining equations. For an arbitrary scheme, this regularity can be horrendously
large; there are examples due to Mayr-Meyer-Bayer-Stillman [BS1] of schemes

X C P’ defined by hypersurfaces of degree d with regularity > (d — 2)2(’“0)
However, experience with actual computations suggests that for the sorts of
varieties that occur in natural problems—e.g. smooth varieties—the regularity
grows much more slowly with d and r. This empirical observation is justified
by again taking a = 1 in Proposition 1, which yields an optimal bound when
X is smooth.

Corollary 4. Assume as above that X C P* is a smooth variety of dimension n
and codimension e defined by hypersurfaces of degrees d\ > d, > --- > d, .
Then
(i) X is (d, +---+d, — e+ 1)-regular; and
(i) X fails to be (d, +---+d, — e)-regular if and only if X is the complete
intersection of hypersurfaces of degrees d,, d,, ..., d,.

In other words, we may say that complete intersections have the “worst” regular-
ity among all smooth varieties defined by equations of given degrees. Previous
work on the regularity of X has centered around estimates involving the degree
of X (cf. [GLP, P, L1, and BM]). Here Proposition 1 implies a slight strength-
ening (Corollary 2.1) of a bound of Mumford’s, which however is presumably
not optimal.

An application of a rather different flavor concerns the Hodge typeof X c P’ .
Let U=P - X denote the complement of X . One says that X has Hodge
type Ht(X) > ¢ if F'H\(U) = H.(U) Vi >0, where F is the Hodge-Deligne
decreasing filtration. Motivated by some arithmetic results, Deligne and Dimca
[DD] conjecture thatif X c P’ is an arbitrary algebraic set defined by equations
of degrees d, >d, >--->d, , then

(%) HU(X) 2 [(r+1-324,) /4] -
They prove this when X is a hypersurface, and Esnault [E] has established the

conjecture when X is a complete intersection. In the special case when X is
smooth, Esnault’s results combined with Proposition 1 yield

Corollary 5. If X C P" is a smooth connected variety of codimension e de-
fined scheme-theoretically by hypersurfaces of degrees d, >d, >--- > d, , then
Ht(X) > [(r +1- Ef:l d,’)/d1]-

This inequality implies (%), but of course the hypotheses on X are much
stronger than what one would like.

Changing gears somewhat, we consider finally the normal generation of ad-
joint bundles on a smooth projective variety X of dimension n. There has been
considerable interest recently in the projective normality and defining equations
of algebraic curves and other varieties (cf. [M, G, L2, KMF, Btl]). The proto-
typical result here is an old theorem of Castelnuovo et al. to the effect that a
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line bundle of degree > 2g + 1 on a smooth curve of genus g defines a projec-
tively normal embedding. It is natural to ask for analogous statements in higher
dimensions. Mukai observed that the known theorems deal with embeddings
defined by bundles of the type K, ® P, where P is an explicit multiple of a
suitably positive bundle. He suggested that one should aim for general results
having this shape. In this direction, we prove that if 4 is a very ample line
bundle on X, then K, ® A% s normally generated as soonas kK >n+1.

Proposition 6. Let A be a very ample line bundle on X , and let B and C be ar-
bitrary numerically effective line bundles on X . Then the natural multiplication
map

H(X,K, 4% 2B) e H (X, K,84°"8C) » H(X, Ky’ ®4**""®B&C)
is surjective provided that k, m > n+ 1. In particular, if k > n+ 1, then

K, ® A%* e B defines a projectively normal embedding of X provided that it is
very ample, i.e., if (X, A, B) # (P", (1), Op).

We show that the same statement holds with one exception when k, m > n.
These results have been obtained independently by Andreatta, Ballico, and
Sommese [AS, ABS]. Analogous assertions for defining equations for higher
syzygies are established by different methods in [EL], to which we refer for a
fuller discussion of the background and earlier work on these questions.

The propositions are consequences of

®k+m

Theorem 7. Let M be a smooth complex projective variety, let A be an ample
line bundle on M , and let L be a globally generated line bundle on M . Consider
a smooth subvariety X C M of codimension e, with ideal sheaf .y = Fy,, .
Suppose that X is defined scheme-theoretically in M by the vanishing of m
sections s, € H'(M, L®%), where d, >d,>--->d, . Then

HM, 7 0K, L% @4 =0 fori>1
provided k > ad, +d,+---+d,.

In fact, it is enough here that 4 be big and nef. Proposition 1 follows imme-
diately. For Proposition 6, one applies the theorem to the diagonal A C X x X,
which is cut out by sections of L = (p,)*4® (p,)"4 aslong as 4 is very ample.
In this setting, the analogous statements involving higher powers of .7, yield
information about the surjectivity of the Wahl map and its generalizations (see
Corollary 3.4).

As for Theorem 7, the idea is to consider the blowing-up p: P = Bl (M) —
M of M along X, and to apply the Kodaira-Ramanujan-Kawamata-Viehweg
vanishing theorem. When d, =d, = --- = d,, = d, one can apply vanishing
directly on P, in which case the result is practically immediate. In general, as
in Severi’s set-up, we work on the blowing-up Y C P of the variety residual
to X in the complete intersection of suitable sections ¢, € H 0(M y F ® L®d’) .
We remark that a similar argument yields a direct generalization (Proposition
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VANISHING THEOREMS 591

1.11) of Severi’s theorem, as well as a generalization (Proposition 1.12) of the
Griffiths vanishing theorem [Griff] for globally generated vector bundles.

The possiblity of applying vanishing theorems on a blow-up to study the
equations vanishing on a subvariety is evidently not a new idea. For example,
much more sophisticated arguments along these lines occur in the work of Es-
nault and Viehweg [EV1, EV2] on Dyson’s lemma. They and others (including
some of the present authors) have been at least implicitly aware for some time
of the special case d, =d, =---=d, =d of Theorem 7. However, the appli-
cability of these ideas to the sort of projective-geometric questions considered
above seems not to have recognized, and it is here that we post our main claim
to novelty.

The Severi-type Theorem 7 and some variants are proven in §1. Section 2
contains the applications to subvarieties of projective space, viz. Proposition
1 and Corollaries 2, 3, 4, and 5. We prove the normal generation of adjoint
bundles (Proposition 6) and some related results in §3.

We wish to thank D. Bayer, D. Butler, D. Eisenbud, H. Pinkham, F. L. Zak,
and especially H. Esnault for valuable discussions and encouragement.

0. NOTATION AND CONVENTIONS

(0.1) We work throughout over the complex numbers.

(0.2) Let X be a projective variety of dimension »n. If L is a line bundle on
X , we write L* for the k-fold tensor power L of L. If k > 0, then as usual
L% = (L*)k . Recall that L is nef if ¢/ (L)-T > 0 for every irreducible curve
I'c X. L is big if for some m > 0 the rational map I IP’HO(L'")
is birational. If L is nef, this is equivalent to asking that [c, (L)" > 0. (See
[Mori, (1.9)] for a fuller discussion.)

(0.3) When X is smooth, we denote by K, the canonical bundle on X.
We will frequently use the Kawamata-Viehweg vanishing theorem [K, V], which
states that if L is a big and nef line bundle on a smooth projective variety, then
H'(X,K,®L)=0 for i >1.

(0.4) Let L,,...,L, beline bundles on a variety M. We say that a sub-
variety X C M with ideal sheaf _#; is scheme-theoretically cut out by sec-
tions s; € HO(M , L,) if the s, vanish on X, and if the sheaf homomorphism
@L: — S, determined by the s, is surjective.

1. A VARIANT OF SERVERI'S THEOREM

In this section we work in the setting of Theorem 7 from the Introduction.
Thus, M is a smooth complex projective variety of dimension r, A is a big and
nef line bundle on M, and L is a globally generated line bundle on M . We
consider a smooth subvariety X C M of pure dimension n and codimension
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592 AARON BERTRAM, LAWRENCE EIN, AND ROBERT LAZARSFELD
e =n —r, and we suppose given the surjective map

N —d
(L.1) PL-s4-0,

i=1

where d, >d, >--->d, > 0. Our purpose now is to prove

Theorem 1.2. Under the hypotheses just stated H i(M , ﬁ' ®K, ® *s A)=0
fora,i>1 and k >ad +d,+---+d,.

As in the introduction, fXa denotes the ath power of the ideal sheaf .7, .
We start by recording two elementary lemmas.

Lemma 1.3. Let P be a smooth variety, let A be a big and nef line bundle on
P, and let © be a base-point free linear system of divisors on P. Then the
restriction A/D of A to a general element D € O is again big and nef.

Proof. This is clear given the fact (cf. [Mori, (1.9), (1.9.1)]) that a nef line
bundle A is big if and only if there exists a natural number d > 0 and a very
ample divisor H such that A° = H® N, where hO(N )#£0. O

Lemma 1.4. Let X C M be a smooth codimension e subvariety of a smooth
variety M, let f: P = Bl, (M) — M be the blowing-up of M along X , and let
E c P be the exceptional divisor. If 0 <t <e—1, then

H'(P, f'F®G,(tE)) = H'(M, F) Vi

for any locally free sheaf F on M .

Proof. By the projection formula and the Leray spectral sequence, it is enough
to show that f,@,(tE) = &,, and R'f,0,(tE) = 0 for i > 0 and ¢ in the
indicated range. When ¢ = 0 that is well known. For ¢ > 1 one argues by
induction from the sequence

0—Gp((t=1)E) = Op(tE) = O, (tE) — 0
using the facts that E = PN is the projectivization of a rank e vector bundle
N on X, and that G, (E) = Gpy(-1). O
Now we turn to the

Proof of Theorem 1.2. Let f: P = Bl,(M) — M be the blowing-up of M
along X, and denote by E C P the exceptional divisor. Recalling again that
f.0p = @,, and R f.0p =0 for i > 0 because X is smooth, one finds by
induction on a the well-known fact that if a > 0 then f,&,(-aE) = S and
R f.Op(—aE) = 0 for i > 0. The projection formula and the Leray spectral
sequence therefore yield

H'(P, f"B(-aE))=H (M, #{ ® B)

for any line bundle B on M. With this in mind, the issue is to prove that
H'(P, f"(K,, ® L? ® A)(—aE)) =0 for i>1 and k >ad, +dy+---+d,.
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VANISHING THEOREMS 593

To this end, let B, = f*L%(—E). Then
(%) B,®(B) = Y (L%%) s base-point free for i > j
thanks to the facts that L is base-point free and d; > dj when i > j. On the

other hand, the sections s, € H 0(M , Ld") defining X give arise in the natural
way to effective divisors F, € |B,|, and the existence of the surjective map (1.1)
means precisely that

(x%) FnFE,N---NF, =32.

m

We now proceed in several steps.
Claim 1.5. Let D, € |B,| be a general divisor, and for 1 <s < e, set

Y=D,nD,n---NnD,.
Then by choosing the D, suitably, we may assume that

(1) Y, is smooth (but possibly disconnected) of pure codimension s in P;
(ii) for any irreducible component Y C Y,, the restriction f"A|Y is big
and nef;

(iii) no component of Y, is contained in the exceptional divisor E'; and

(iv) YnF_  Nn---NF, =3.

We prove Claim 1.5 by induction on s. It follows to begin with from (x)
and () that B, is globally generated, and hence (i), (iii), and (iv) are clear
when s = 1. Statement (iii) follows in the case s = 1 from (1.3) and the
fact that f"A4 is big and nef. Assume inductively that Claim 1.5 is known
for a given s. Denoting by Bs(B,) the base-locus of B,, it is a consequence
of (x) that Bs(B,) C F , N---NF, . Therefore, thanks to (iv), B |Y, is
base-point free and, in fact, B,_,|Y, is generated by HO(P, B_,,). But then
by taking D, € |B,| to be sufficiently general, we can certainly arrange that
Y_ =Y ND,, satisfies (i)-(iv).

Now fix Y =Y,=D, NnD,N---ND, satisfying the assertions of Claim 1.5,
and theset d =d, +d, +---+d,.

Claim 1.6. If k >ad, +d,+---+d,, then

H'(P, f"(K,,® L' ® ) @ (~aE)) =0 fora,i> I

We prove this by applying the Kawamata-Viehweg vanishing theorem on
(each connected component of) Y . To this end, use adjunction and the formula
for the canonical divisor of a blow-up along a smooth center to compute

K, =K,®B,®---®B,|Y
= K, @ Fp((e — VE) & ('L’ ® &,(=€E))|Y
=F'(K,,® L°)® F,(—E)|Y.

(If Y is disconnected, the restriction of the bundle appearing on the right-hand
side computes the canonical bundle of any component of Y .) Therefore

S (K, ®L*®A4)®O,(—aE) 2, =Ky @ f (A® L 44" %) g (B)*".
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Recalling that B, = f *L%(~E) is base-point free and that f*A|Y is big and
nef, it follows that if k > ad, +d, +---+d,. Then (K, ® L“® 4) ®
Op(—aE) ® &, is of the form K, ® C, where C is nef and big. Hence Claim
1.6 follows from [K] or [V].

Consider next the exact sequence 0 — %, — &, — &, — 0. Twisting
through by (K u® L*® A)(—aFE), the theorem will follow from Claim 1.6 as
soon as we establish the vanishing

(1.7) Ifa>landk>ad +d,+---+d,,
then H'(P, f*(K,, ® L* ® 4) ® 7, (~aE)) =0 for i > 1.

To this end, let ¥ = @;_, B, , so that ¥ C P is the zero locus of a vector
bundle map ¢: V — @, . In view of the Koszul resolution of ¥, determined
by ¢, for (1.7) it is in turn enough to prove.

(1.8) H'(P, f (K, ® L" ® 4)(—~aE) @ A'V) = 0
fora,i>1, t>1, andk>ad, +d,+---+d,.

But A'V is a direct sum of line bundles of the form f*L™° ® Op(tE) with
0<s<d +---+d,. Therefore (1.8)—and hence finally the theorem—is a
consequence of

Claim 1.9. Forany 1 <t<e and a,i>1:

H'(P, (K, L ® 4)8,((t - a)E)) = 0
provided k > ad, +d,+---+d, and 0<s<d, +---+d,.

Proceeding by induction on a, assume first that a = 1. Then by Lemma

1.4,
H'P, (K, L @) ((t-1)E)=H'M,K, 8L 4).

But £ > 5 and hence the term on the right vanishes by Kawamata-Viehweg.
Now once one knows Claim 1.9 for given a > 1, then the theorem follows for
that value of a. So we can assume inductively that H'(P, f*(K,, ® L% © A)
(—aE))=0 for i>1 and k > ad, +d,+---+d,. This implies the case a+1
of Claim 1.9 when ¢ < a+ 1, whereas when ¢ > a+1 it follows as before from
Lemma 1.3 and Kawamata-Viehweg vanishing. This completes the proof of the
theorem. 0O

The remainder of this section is devoted to spelling out some variants of
Theorem 1.2 and its proof. As we stated above, there is a particularly quick
argument to handle the special case d, =d, =---=d, =d.

Remark 1.10. Keeping the notation of Theorem 1.2, assume that X C M is
cut out by sections of H 0(M , Ld) . As before let f: P — M be the blowing-up
of M along X, and let E C P be the exceptional divisor. Since X is cut out
by sections of L, f *Ld(—E ) is globally generated, and hence nef. Therefore

(K, L @4)@0,(—aE) =K, (f"L°(-E)™* o f (L Ve 4),
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which is of the form K,® (big and nef) provided that k > d(e+a—1). Hence,
by Kawamata-Viehweg vanishing,

H'M, 7oK, oL @ 4)=H'(P, f'(K,,® L ® 4) ® F,(—aE)) = 0

for a,i>1 and k >d(e +a—1), as required.

Note that Severi’s theorem does not follow directly from the statement of
Theorem 1.2 because he does not assume as we do that X c P’ is defined by hy-
persurfaces of degrees < max{d,, ..., d,_,}. However the proof of Theorem
1.2 does yield the following generalization of Severi’s result, whose verification
we leave to the reader.

Proposition 1.11. With notation as in the proof of Theorem 1.2, assume that
X C M lies in the complete intersection of e = codim(X, M) sections s; €
HO(M , Ld") ,andlet F, € |f *Ld"(—E )| be the corresponding divisors residual to
E in the blow-up P of M along X. Assume that Y = FnF,Nn---NF, is
smooth, and that no component of Y lies in the exceptional divisor E. Then
H(M, 58K, 0L ®4) =0 for i>1 and k>d, +d,+---+d,. O

Observe that we are not assuming here anything extra about the equations
defining X in M . The argument for Theorem 1.2 does not directly yield the
analogous statement for higher power of the ideal sheaf, because if a > 1 then
the proof of Claim 1.6 requires that one know that f~ LY (=F) is generated by
its global sections. It might seem more natural to assume the smoothness of
the variety X' ¢ M residual to X in the complete intersection of the §;—as
Severi did—but when n >4, X' will typically be singular.

Finally, we remark that an argument similar to the proof of Theorem 1.2
leads to an extension of a well-known vanishing theorem of Griffiths [Griff]. As
at the beginning of this section, M 1is a complex projective manifold, L is a
globally generated line bundle on M, and A is a big and nef line bundle on
M.

Proposition 1.12. Suppose that E is a vector bundle of rank e on M, which is
a quotient of a direct sum of powers of L

L@ - eL™ > E—0,
where 0 < d, <---<d, . Then
H'M,S(E)®e L ™ @det E® A® K,,) =0
for i>1,t>0,and k<(t+1)d, +---+4d,.

When d, =---=d,, =0, this is the Griffiths vanishing theorem for globally
generated vector bundles.

Sketch of Proof of Proposition 1.12. Let f: P = PE — M be the projectivization
of E andset B, = f"L™%“®0@,,(1). Asin the proof of Theorem 1.2 one argues
first that if D, € |B,] is a sufficiently general divisor, then Y = D,nD,N---ND,
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596 AARON BERTRAM, LAWRENCE EIN, AND ROBERT LAZARSFELD

is smooth and generically finite over M. Set C, , = f *(L_k ®@det E® A®K,,)
® Opg(t). Applying Kawamata-Viehweg vanishing on Y, one finds that
HY(Y,C,,|Y) =0 for i > 1 and k < (t+ 1)d, +--- +d,,. The Koszul

resolution for %, shows that Hi(P, C, ,®F)=0for i and k in the same
range, and the assertion follows. 0O

2. APPLICATIONS TO SUBVARIETIES OF PROJECTIVE SPACE

In this section we give the applications to subvarieties of projective space, as
stated in the introduction.

Proof of Proposition 1. Apply Theorem 1.2 with A=L =¢,.(1). O

Proof of Corollary 2. If d, +---+d, < r+1, then H'(X, (k) = 0 for
k > 1 and hence X is projectively normal. If d, +--- +d, < r, then in
addition H''(P", #,(k)) = H'(X, &, (k)) =0 for k >0 and i > 1. Since
Hi(X, Oy(k)) =0 when k <0 and 1 <i<n-1 by Kodaira, it follows that
X is projectively Cohen-Macaulay. O

Proof of Corollary 5. When X is a local complete intersection, Esnault [E]
proves that the desired inequality is a consequence of the vanishing
H'(P", #{(k))=0 for i>0and 0>k >ad +d,+---+d,—r. When i =0
this is clear since k < 0, and when i > 1 it is the assertion of Proposition
1. O

Proof of Corollary 4. Given X C P’ of dimension 7, to check that X is k-
regular (for k > 0) it is sufficient to verify that H'(P", %, (k — i)) = 0 for
1 <i < n+1, the remaining vanishings being automatic. Therefore statement
(1) of the corollary is a consequence of Proposition 1.

Now assume that X fails to to be (d, +---+d, —e)-regular. Then it likewise
follows from Proposition 1 that

H™(®, A, ++d,—e—n-1)=H'(X,Oud, +--+d,—r—1)) £0.
Equivalently,
(+) HX, K, @B, (r+1—d, —---—d,) #0.

Arguing as in the proof of Theorem 1.2, we may choose polynomials s, €
HO(]P', H(d;)) (1 <i < e) defining hypersurfaces D; > X such that the s,
generate ., away from a codimension 1 subset . Thus

!
=4sD;ND,N---ND, =XUX,

where X' (if nonempty) is either disjoint from X or meets X in a divisor.
We suppose henceforth that n =r —e > 1. Then Y is connected, so to show
that X = Y, it is enough to prove that XN X' =& .
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VANISHING THEOREMS 597

To this end, observe that the differentials of the s; determine in the natural
way a map
u:Oy(—d))® - ®0y(-d,) > N",
where N” is the conormal bundle to X in P’. Since the s; generically gener-
ated %, , u is injective considered as a homomorphism of coherent sheaves.
Furthermore, coker u is supported on X N X’'. Computing first Chern classes,
it follows that X N X’ is supported on a divisor in the linear series

|detN" @ @y(d, +---+d,)| =|Oy(d,+ - +d,—r— 1)@ Ky]|.

In view of (x), this implies that the linear series in question is trivial, and hence
that u is an isomorphism. Therefore X N X' = &, and we are done. O

Remark. The assertion of the corollary remains true if dimX = 0. We leave
it to the interested reader to make the necessary changes to the argument just
given.

Proposition 1 also leads to a quick proof of a slight generalization of a theo-
rem of Mumford [BM] bounding the regularity of X in terms of its degree.

Corollary 2.1. Assume that X C P' is a smooth variety of degree d, dimension
n, and codimension e =r —n. Set ¢ =min{e, n+ 1}. Then

H'(P', #(k)=0 fori>1landk>c(d-1)-n.

Remark. Mumford’s result is the statement that H'(P", %, (k)) =0 for i > 1
and k> (n+1)d—-1)-n=(n+1)(d-2)+ 1. When X is nondegenerate,
one hopes that in fact the stated vanishing holds as soon as kK >d +n—r, at
least when 7 > 2n + 1, but this is only known when dimX < 3 [GLP, P, L1,
R2].

Proof of Corollary 2.1. When r > 2n + 1, it is enough to prove the stated
vanishing for the embedding X C P*"*! obtained by taking a general projection
to P*"*!. Therefore we may assume that r = n + ¢. But recall that if X has
degree d, then X is scheme-theoretically cut out in P" by hypersurfaces of
degree d (cf. [M]). Hence the corollary follows from Proposition 1. O

Remark. Observe that the proof requires only the easy case d, =---=d, =d
of Proposition 1.

We conclude this section by proving the “Babylonian-tower”-type' Corollary
3 and a generalization. As before X C P’ denotes a smooth irreducible projec-
tive variety of dimension 7, degree d, and codimension ¢ = r—n. We assume
that X C P’ is nondegenerate, i.e., that it is not contained in any hyperplanes.
The first point is an elementary estimate for the number of generators of the
homogeneous ideal of a Cohen-Macaulay variety.

"Results of this sort can be seen as asserting that X C P” is a complete intersection provided
that it is the hyperplane section of a smooth variety X, C pt! , where X, isin turn the hyperplane

section of a smooth variety X, C P2 , and so on indefinitely—a situation that is supposed to evoke
the image of a Babylonian tower.
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Lemma 2.2. Assume that X C P" as above is projectively Cohen-Macaulay. Then
the homogeneous ideal I =1, of X can be generated by e(d — 1) — () gener-
ators.

Proof. Since the homogeneous coordinate ring of X is Cohen-Macaulay, we
can mod out by a regular sequence without changing the number of generators
of I. Therefore the lemma reduces to the following assertion:

(2.3)
Let V' be a vector space of dimension ¢; and let I ¢ S =
Sym(V') be a homogeneous ideal of codimension d, generated
by elements of degrees > 2, so that the graded ring R = S//
is Artinian of length d. Let C = S/S_ denote the residue field

of § at the irrelevant maximal ideal. Then dimg Torf(R, € <
e(d-1)- ().

But this follows easily from the fact (cf. [G]) that one can compute the Tor in
question as the homology at the middle term of the Koszul-type complex:

AVOR—-V®R—R.

Indeed, the map on the right has rank > e, and choosing an element of R gives
an embedding A’V C ker{¥ ® R— R}. O

Remark. 1In the situation of the lemma, let R be the homogeneous coordinate
ring of X . A similar argument shows that the kth module of syzygies of I,
has < ({)(d — 1) — (,$,) minimal generators. Moreover this is sharp if X isa
variety of minimal degree.

Corollary 2.4. Keeping notation as above, assume that d < r/2e. Then X is
a complete intersection. If n > (3r — 2)/4, then X is a complete intersection
provided that d <r/e.

Proof. Recall again that if X C P has degree d, then X is scheme-theoretic-
ally defined by hypersurfaces of degree d (cf. [M]). Therefore X is projectively
Cohen-Macaulay once de < r thanks to Corollary 2. In this case, Lemma 2.2
implies that X is cut out by < ed equations. But according to a result of Falt-
ings [F, Satz 3], if X C P’ is cut out scheme-theoretically by k < r/2 equations,
then X is a complete intersection. The first assertion of the corollary follows.
For the second, we invoke an extension of Faltings’s theorem by Netsvetaev [N],
who shows that it is enough to assume k < n provided that » > (3r—2)/4. O

Remark. In order to underscore the fundamentally elementary nature of Corol-
lary 3, we wish to emphasize that the quoted theorem of Faltings is quite quick
to prove. Observe also that we have again only used the case d, =---=d, =d
of Proposition 1. Note also that we have not used the full statement of Lemma
2.2. Doing so leads to a slightly better inequality in Corollary 2.4, which we
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leave to the reader to formulate. We remark that Faltings’s theorem is used in
a similar context in Flenner’s paper [F12].

3. NORMAL GENERATION OF ADJOINT BUNDLES

This section is devoted to Proposition 6 of the introduction and some vari-
ants. Throughout, X is a smooth projective variety of dimension »n and A is
a very ample line bundle on X . Fix nef line bundles B and C on X, and for
any integers k, m, put

M =K,24°®B and N,=K,24"&C.
We denote byp,, p,: X x X — X the two projections.

Lemma 3.1. The diagonal A C X x X is cut out scheme-theoretically by sections
of L=(p))"4® (py)"4.

Proof. The embedding X C P’ defined by A4 gives rise to an inclusion X x
X CP xP',and Ay = Ay N (X x X). Therefore it is enough to prove that
Ap C P x P’ is defined by sections of &, (1, 1). But this is elementary. O

Proof of Proposition 6. We use the time-honored device of reducing the question
to a vanishing on X x X . Specifically, consider on X x X the exact sequence

0- (p,)"M, ®(p,)"N,, % — (p,)"M, ®(p,)’N,, » M, ® N, |A — 0.

The multiplication map H’(X, M,)® H (X, N,) — H(X, M, ® N, ) is just
the homomorphism on global sections induced by the restriction to A. Conse-
quently it is enough to prove that Hl(XxX, (pl)*Mk®(p2)*Nm®J7A) =0 when
k, m > n+ 1. But this follows from Theorem 1.2 applied to the embedding
ACX x X with L=(p,)"A® (p,)*4. In fact,

(p) "M, ® (p,)'N,, =Ky, x®L"®D,

where D = (pl)*(Ak_" ® B)® (p,) (A" " ®C). Now L is certainly base-point
free, and D is ample provided that k, m > n + 1. Therefore the required
vanishing follows from Theorem 1.2 and Lemma 3.1 O

Variant 3.2. With assumptions as above, the multiplication map
H'X,M)8H(X,N,)—» H(X, M, ®N,)

is surjective as soon as k, m > n unless (X, A) = (P", @, (1)). In this case,
surjectivity fails if either B or C is trivial.

Sketch of proof. Rather than trying to put this in a general setting, it is easiest
in the case at hand to simply give a modification of the argument of Remark
1.10 above. Consider the blowing-up f: P =BL(X x X) - X x X of X x X
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along the diagonal. Let £ C P denote the exceptional divisor, and set H =
/" ((p,)"4® (p,)"4)(—E) . Much as in Remark 1.10 the required vanishing of
H'(P, [ ((p))"M, ®(p,)"N,)(—E)) for k, m > n will follow from Kawamata-
Viehweg as soon as we prove

Claim 3.3. With the stated exception, H is big and nef.

In fact consider the embedding X C P defined by 4. Then there is a natural
map A AxX-A—-G= Grass(IE"1 , P) that takes a pair of points to the line
they span. 4, extends to a morphism A: P — G, and one checks (for instance
as in Lemma 3.1) that H = A*é’G(l) , where (1) is the positive generator
of Pic(G). To prove Claim 3.3 it is then enough to show that A is generically
finite. But this is just the classical fact that unless X = P’ (which case we are
excluding), a general secant line to X is not contained in X. O

Remark. By adapting an argument from [G, II], one can use these ideas to prove
weak results for defining equations and higher syzygies. Specifically, one finds
that if 4 is very ample and kK > (p+1)n+1, then K, ® A" satisfies condition
(N,) in the sense of [GLP] or [G]. However, stronger results are established
using vector bundle methods in [EL], so we do not pursue this approach here.

Finally, we give an application to Gaussian maps. Given line bundles N and
M on X, set R(M, N) =ker{H°(X, M)® H'(X, N) - H' (X, M ® N)}.
Then one can define a map

Var ni ROM, N) - H (X, M®N®Q))

by making sense of

St sRdt—t®ds.

These homomorphisms have attracted a certain amount of attention lately,
mainly on curves, starting with the work of Wahl [W1] (cf. also [W2, W3]).
In particular, there is some interest in understanding when y M.N is surjective.
For curves the best-possible result is known when N and M have large degree
[BEL]. In general one has:

Corollary 3.4. With M, and N, defined as at the beginning of this section, let
Yk.m: R(M, N,) — HO(X, M, ®N, ®Q/1Y) denote the corresponding Gaussian
homomorphism. Then Vk.m IS Surjective provided that k, m > n+2.

Proof. 1t is enough to prove that H'(X x X, (p,)"M, ® (p,)"N,, ®7) =0
when k, m > n+ 2 (cf. [W3]). But this follows as above from the case a = 2
of Theorem 2.1. O

Remark. As in [W3] one can define higher order maps involving higher powers
of % . Needless to say, the same argument gives a surjectivity statement in
this context as well.
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